美文网首页
[轻松入门]3D点云检测/3D雷达检测学习资料(一)

[轻松入门]3D点云检测/3D雷达检测学习资料(一)

作者: 加油11dd23 | 来源:发表于2022-03-25 22:14 被阅读0次

最近自动驾驶是一个小风口,小菜鸡凑巧被mentor分配了研究3d点云检测,于是搭上了这路末班车,但在研究这一块的时候发现:

[图片上传失败...(image-3a5c8a-1649212867710)]

  • 3d点云检测目前还处于2d检测领域初中期的阶段,学习资料有点少,导致我初期学的时候不清楚常见的trick有哪些,改哪些模块可能会有效。说的更简单一点,3d检测入门前期快速培养intuition太难,不如2d检测容易。
  • 大家更多的关注的都是精度,可能偶尔会有一些零零散散的文章关注速度。初期找这一部分文章花了很久很久。
  • 没有一个随时更新的paper list供个人来follow学术前沿。比如现在cvpr2022结果出来了,但还没有人汇总cvpr20223d检测的文章。

鉴于以上原因,小菜鸡在GitHub总结了一个相关资源的list,【如果你觉得有用,请给我点个star,感谢~】

GitHub - TianhaoFu/Awesome-3D-Object-Detection: Papers, code and datasets about deep learning for 3D Object Detection.github.com/TianhaoFu/Awesome-3D-Object-Detection/[图片上传失败...(image-933e40-1649212867706)]

并且会不断维护更新,无他,只是不想自己走过的弯路让别人再走一遍,希望各路大神能前来指点一二。

如何用好这个repo?

  1. 大致扫完一眼后,快速进入blog部分,学习经典方法。
  2. 进入course部分,学习图宾根大学课程的3d检测部分。
  3. 进入video部分,看3d检测相关的seminar。
  4. 现在,你已经大致具备3d检测领域的intuition了,之后
  • 如果你想发论文,你可以进入paper部分。
  • 如果你想打比赛,你可以进入competition solution部分。【等待更新】
  • 如果你想做工程,你可以进入engineering部分。【等待更新】

repo内容有哪些?【部分内容节选】

Dataset

  • KITTI Dataset

  • 3,712 training samples

  • 3,769 validation samples

  • 7,518 testing samples

  • nuScenes Dataset

  • 28k training samples

  • 6k validation samples

  • 6k testing samples

Top conference & workshop

Conferene

  • Conference on Computer Vision and Pattern Recognition(CVPR)
  • International Conference on Computer Vision(ICCV)
  • European Conference on Computer Vision(ECCV)

Workshop

Paper (Lidar-based method)

  • HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection(CVPR2020) paper
  • LiDAR R-CNN: An Efficient and Universal 3D Object Detector(CVPR2021) paper
  • Center-based 3D Object Detection and Tracking(CVPR2021) paper
  • 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection(CVPR2021) paper
  • Embracing Single Stride 3D Object Detector with Sparse Transformer(CVPR2022) paper, code
  • Point Density-Aware Voxels for LiDAR 3D Object Detection(CVPR2022) paper, code
  • A Unified Query-based Paradigm for Point Cloud Understanding(CVPR2022) paper
  • Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds(CVPR2022) paper, code
  • Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds(CVPR2022) paper, code
  • Back To Reality: Weakly-supervised 3D Object Detection with Shape-guided Label Enhancement(CVPR2022) paper, code
  • Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds(CVPR2022) paper, code

Survey

  • 2021.04 Point-cloud based 3D object detection and classification methods for self-driving applications: A survey and taxonomy paper
  • 2021.07 3D Object Detection for Autonomous Driving: A Survey paper
  • 2021.07 Multi-Modal 3D Object Detection in Autonomous Driving: a Survey paper
  • 2021.10 A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving paper
  • 2021.12 Deep Learning for 3D Point Clouds: A Survey paper

Book

  • 3D Object Detection Algorithms Based on Lidar and Camera: Design and Simulation book

Video

  • Aivia online workshop: 3D object detection and tracking video
  • 3D Object Retrieval 2021 workshop video
  • 3D Deep Learning Tutorial from SU lab at UCSD video
  • Lecture: Self-Driving Cars (Prof. Andreas Geiger, University of Tübingen) video
  • Current Approaches and Future Directions for Point Cloud Object (2021.04) video
  • Latest 3D OBJECT DETECTION with 30+ FPS on CPU - MediaPipe and OpenCV Python (2021.05) video

Course

Blog

Famous Research Group/Scholar

Famous CodeBase

Famous Toolkit

以上就是一个小小的简短的介绍,未完待续,之后的文章将具体讲一些3d检测领域的paper套路、比赛套路、工程套路等等。【自己总结的肯定和各路大神比不了,所以非常非常欢迎各路大神能前来和小菜鸡交流】
希望大家多多多提一些意见,共同进步!

相关文章

网友评论

      本文标题:[轻松入门]3D点云检测/3D雷达检测学习资料(一)

      本文链接:https://www.haomeiwen.com/subject/irxjjrtx.html