如果还不了解原生nio的socket编程,可以看前置博文
一个简单的Demo程序
先贴一个简单的netty的example中echo服务端代码
/*
* Copyright 2012 The Netty Project
*
* The Netty Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package io.netty.example.echo;
import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelOption;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;
import io.netty.handler.logging.LogLevel;
import io.netty.handler.logging.LoggingHandler;
import io.netty.handler.ssl.SslContext;
import io.netty.handler.ssl.SslContextBuilder;
import io.netty.handler.ssl.util.SelfSignedCertificate;
/**
* Echoes back any received data from a client.
*/
public final class EchoServer {
static final boolean SSL = System.getProperty("ssl") != null;
static final int PORT = Integer.parseInt(System.getProperty("port", "8007"));
public static void main(String[] args) throws Exception {
// Configure SSL.
final SslContext sslCtx;
if (SSL) {
SelfSignedCertificate ssc = new SelfSignedCertificate();
sslCtx = SslContextBuilder.forServer(ssc.certificate(), ssc.privateKey()).build();
} else {
sslCtx = null;
}
// Configure the server.
EventLoopGroup bossGroup = new NioEventLoopGroup(1);
EventLoopGroup workerGroup = new NioEventLoopGroup();
final EchoServerHandler serverHandler = new EchoServerHandler();
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 100)
.handler(new LoggingHandler(LogLevel.INFO))
.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline p = ch.pipeline();
if (sslCtx != null) {
p.addLast(sslCtx.newHandler(ch.alloc()));
}
//p.addLast(new LoggingHandler(LogLevel.INFO));
p.addLast(serverHandler);
}
});
// Start the server.
ChannelFuture f = b.bind(PORT).sync();
// Wait until the server socket is closed.
f.channel().closeFuture().sync();
} finally {
// Shut down all event loops to terminate all threads.
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
}
代码很简洁,但是看不懂,因为使用的这些类均和Nio原生编程相差甚远,下面先简单分析一下。
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup);
此处首先是新建了一个ServerBootstrap 启动类,分别设置好boss和worker工作线程。
b.channel(NioServerSocketChannel.class);
此处是设置channel的类型,内部会以创建一个ServerBootstrapChannelFactory工厂来保存class,用于后续对象创建。
b.option(ChannelOption.SO_BACKLOG, 100);
此处设置了客户端连接socket属性。
b.childHandler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch) throws Exception {
ChannelPipeline p = ch.pipeline();
if (sslCtx != null) {
p.addLast(sslCtx.newHandler(ch.alloc()));
}
//p.addLast(new LoggingHandler(LogLevel.INFO));
p.addLast(serverHandler);
}
});
此处设置了客户端连接建立以后对SocketChannel的初始化逻辑。
以上的代码均是给ServerBootstrap对象的各个参数赋值,真正让netty跑起来的重点在下面代码。
ChannelFuture f = b.bind(port).sync();
阅读这段代码之前,我们留个悬念,我们需要先了解另一个类:NioEventLoop。了解了NioEventLoop,netty中的线程模型就清晰起来了,后续分析将不会太费力。
NioEventLoop
NioEventLoop是与jdk层nio交互的最重要的对象,是在NioEventLoopGroup对象中创建出来的。
NioEventGroup内部有个名为children的数组,我们把它理解成一个头尾相连的环,每次我们调用NioEventLoopGroup.next()方法时,会返回这个环的下一个元素。这个元素就是一个NioEventLoop。
这个children的大小由什么决定呢?答案就是NioEventLoopGroup对象构造时传入的线程数量。
接下来我们来看看NioEventLoop的具体实现,构造函数
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider) {
super(parent, executor, false);
if (selectorProvider == null) {
throw new NullPointerException("selectorProvider");
}
provider = selectorProvider;
selector = openSelector();
}
看一下openSelector()的实现。
private Selector openSelector() {
final Selector selector;
try {
selector = provider.openSelector();
} catch (IOException e) {
throw new ChannelException("failed to open a new selector", e);
}
if (DISABLE_KEYSET_OPTIMIZATION) {
return selector;
}
try {
SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();
Class<?> selectorImplClass =
Class.forName("sun.nio.ch.SelectorImpl", false, ClassLoader.getSystemClassLoader());
// Ensure the current selector implementation is what we can instrument.
if (!selectorImplClass.isAssignableFrom(selector.getClass())) {
return selector;
}
Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");
selectedKeysField.setAccessible(true);
publicSelectedKeysField.setAccessible(true);
selectedKeysField.set(selector, selectedKeySet);
publicSelectedKeysField.set(selector, selectedKeySet);
selectedKeys = selectedKeySet;
logger.trace("Instrumented an optimized java.util.Set into: {}", selector);
} catch (Throwable t) {
selectedKeys = null;
logger.trace("Failed to instrument an optimized java.util.Set into: {}", selector, t);
}
return selector;
}
构造函数调用了provider.openSelector()来产生一个多路复用选择器对象。
jdk原生Nio实现中,selector内部有一个HashSet对象selectedKeys,用来存储调用select函数之后的结果集。如果未禁用优化,此处还利用反射将selector内部的selectedKeys值设置成本地对象。这么做有一个好处,每次调用Selector的select函数以后,能很方便的查看selectedKeys的值以确认是否产生了发生了新的事件。
外界可以调用NioEventLoop的execute方法来放入任务,查看其实现。
public void execute(Runnable task) {
if (task == null) {
throw new NullPointerException("task");
}
boolean inEventLoop = inEventLoop();
if (inEventLoop) {
addTask(task);
} else {
startThread();
addTask(task);
if (isShutdown() && removeTask(task)) {
reject();
}
}
if (!addTaskWakesUp) {
wakeup(inEventLoop);
}
}
private void startThread() {
synchronized (stateLock) {
if (state == ST_NOT_STARTED) {
state = ST_STARTED;
delayedTaskQueue.add(new ScheduledFutureTask<Void>(
this, delayedTaskQueue, Executors.<Void>callable(new PurgeTask(), null),
ScheduledFutureTask.deadlineNanos(SCHEDULE_PURGE_INTERVAL), -SCHEDULE_PURGE_INTERVAL));
doStartThread();
}
}
}
NioEventLoop内部有一个状态变量state,这保证了在调用startThread方法时,只会调用一次doStartThread。而doStartThread,在首次调用的时候,会创建新的线程,查看doStartThread
private void doStartThread() {
assert thread == null;
executor.execute(new Runnable() {
@Override
public void run() {
thread = Thread.currentThread();
if (interrupted) {
thread.interrupt();
}
boolean success = false;
updateLastExecutionTime();
try {
SingleThreadEventExecutor.this.run();
success = true;
} catch (Throwable t) {
logger.warn("Unexpected exception from an event executor: ", t);
} finally {
if (state < ST_SHUTTING_DOWN) {
state = ST_SHUTTING_DOWN;
}
// Check if confirmShutdown() was called at the end of the loop.
if (success && gracefulShutdownStartTime == 0) {
logger.error("Buggy " + EventExecutor.class.getSimpleName() + " implementation; " +
SingleThreadEventExecutor.class.getSimpleName() + ".confirmShutdown() must be called " +
"before run() implementation terminates.");
}
try {
// Run all remaining tasks and shutdown hooks.
for (;;) {
if (confirmShutdown()) {
break;
}
}
} finally {
try {
cleanup();
} finally {
synchronized (stateLock) {
state = ST_TERMINATED;
}
threadLock.release();
if (!taskQueue.isEmpty()) {
logger.warn(
"An event executor terminated with " +
"non-empty task queue (" + taskQueue.size() + ')');
}
terminationFuture.setSuccess(null);
}
}
}
}
});
}
主角是executor,看下其默认实现。
public final class ThreadPerTaskExecutor implements Executor {
private final ThreadFactory threadFactory;
public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
if (threadFactory == null) {
throw new NullPointerException("threadFactory");
}
this.threadFactory = threadFactory;
}
@Override
public void execute(Runnable command) {
threadFactory.newThread(command).start();
}
}
可以看到,每次调用executor的execute方法将会产生一个新的线程,实际上只调用了一次doStartThread,所以只会创建一个线程。
新线程最后调用到了"SingleThreadEventExecutor.this.run();"。好了,我们离真相已经很近了。贴一下run的实现。
protected void run() {
for (;;) {
oldWakenUp = wakenUp.getAndSet(false);
try {
if (hasTasks()) {
selectNow();
} else {
select();
// 'wakenUp.compareAndSet(false, true)' is always evaluated
// before calling 'selector.wakeup()' to reduce the wake-up
// overhead. (Selector.wakeup() is an expensive operation.)
//
// However, there is a race condition in this approach.
// The race condition is triggered when 'wakenUp' is set to
// true too early.
//
// 'wakenUp' is set to true too early if:
// 1) Selector is waken up between 'wakenUp.set(false)' and
// 'selector.select(...)'. (BAD)
// 2) Selector is waken up between 'selector.select(...)' and
// 'if (wakenUp.get()) { ... }'. (OK)
//
// In the first case, 'wakenUp' is set to true and the
// following 'selector.select(...)' will wake up immediately.
// Until 'wakenUp' is set to false again in the next round,
// 'wakenUp.compareAndSet(false, true)' will fail, and therefore
// any attempt to wake up the Selector will fail, too, causing
// the following 'selector.select(...)' call to block
// unnecessarily.
//
// To fix this problem, we wake up the selector again if wakenUp
// is true immediately after selector.select(...).
// It is inefficient in that it wakes up the selector for both
// the first case (BAD - wake-up required) and the second case
// (OK - no wake-up required).
if (wakenUp.get()) {
selector.wakeup();
}
}
cancelledKeys = 0;
final long ioStartTime = System.nanoTime();
needsToSelectAgain = false;
if (selectedKeys != null) {
processSelectedKeysOptimized(selectedKeys.flip());
} else {
processSelectedKeysPlain(selector.selectedKeys());
}
final long ioTime = System.nanoTime() - ioStartTime;
final int ioRatio = this.ioRatio;
runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
if (isShuttingDown()) {
closeAll();
if (confirmShutdown()) {
break;
}
}
} catch (Throwable t) {
logger.warn("Unexpected exception in the selector loop.", t);
// Prevent possible consecutive immediate failures that lead to
// excessive CPU consumption.
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignore.
}
}
}
}
run方法,是一个死循环,做的事情就是周期执行Selector的select函数获取事件并处理,以及执行一些抛进队列的任务。
- select()/selectNow(),查看函数内部,执行了原生Selector的select方法,第一步已经浮出水面了,根据nio的调用流程(详细代码在这篇博文中有),下一步应该就是ServerSocketChannel调用accept函数来接受客户端链接了,让我们找一下。
-
2.如果select调用之后有事件发生。那么selectedKeys将发生改变(注意selectedKeys变量实际是指向底层Selector的触发事件集合的引用),此时进入processSelectedKeysOptimized函数处理:
private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
for (int i = 0;; i ++) {
final SelectionKey k = selectedKeys[i];
if (k == null) {
break;
}
final Object a = k.attachment();
if (a instanceof AbstractNioChannel) {
processSelectedKey(k, (AbstractNioChannel) a);
} else {
@SuppressWarnings("unchecked")
NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
processSelectedKey(k, task);
}
if (needsToSelectAgain) {
selectAgain();
// Need to flip the optimized selectedKeys to get the right reference to the array
// and reset the index to -1 which will then set to 0 on the for loop
// to start over again.
//
// See https://github.com/netty/netty/issues/1523
selectedKeys = this.selectedKeys.flip();
i = -1;
}
}
}
进一步看processSelectedKey
private static void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
final NioUnsafe unsafe = ch.unsafe();
if (!k.isValid()) {
// close the channel if the key is not valid anymore
unsafe.close(unsafe.voidPromise());
return;
}
try {
int readyOps = k.readyOps();
// Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead
// to a spin loop
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
if (!ch.isOpen()) {
// Connection already closed - no need to handle write.
return;
}
}
if ((readyOps & SelectionKey.OP_WRITE) != 0) {
// Call forceFlush which will also take care of clear the OP_WRITE once there is nothing left to write
ch.unsafe().forceFlush();
}
if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
// remove OP_CONNECT as otherwise Selector.select(..) will always return without blocking
// See https://github.com/netty/netty/issues/924
int ops = k.interestOps();
ops &= ~SelectionKey.OP_CONNECT;
k.interestOps(ops);
unsafe.finishConnect();
}
} catch (CancelledKeyException e) {
unsafe.close(unsafe.voidPromise());
}
}
当客户端触发连接的时候,readyOps应该是16 ,对应着SelectionKey.OP_ACCEPT(如果触发了OP_READ,那么将触发读取客户端数据操作,这个在下篇博文中再详尽分析,地址),进一步查看unsafe.read()中调用的doReadMessages方法。
public void read() {
assert eventLoop().inEventLoop();
if (!config().isAutoRead()) {
removeReadOp();
}
final ChannelConfig config = config();
final int maxMessagesPerRead = config.getMaxMessagesPerRead();
final boolean autoRead = config.isAutoRead();
final ChannelPipeline pipeline = pipeline();
boolean closed = false;
Throwable exception = null;
try {
for (;;) {
int localRead = doReadMessages(readBuf);
if (localRead == 0) {
break;
}
if (localRead < 0) {
closed = true;
break;
}
if (readBuf.size() >= maxMessagesPerRead | !autoRead) {
break;
}
}
} catch (Throwable t) {
exception = t;
}
int size = readBuf.size();
for (int i = 0; i < size; i ++) {
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
pipeline.fireChannelReadComplete();
if (exception != null) {
if (exception instanceof IOException) {
// ServerChannel should not be closed even on IOException because it can often continue
// accepting incoming connections. (e.g. too many open files)
closed = !(AbstractNioMessageChannel.this instanceof ServerChannel);
}
pipeline.fireExceptionCaught(exception);
}
if (closed) {
if (isOpen()) {
close(voidPromise());
}
}
}
@Override
protected int doReadMessages(List<Object> buf) throws Exception {
SocketChannel ch = javaChannel().accept();
try {
if (ch != null) {
buf.add(new NioSocketChannel(this, childEventLoopGroup().next(), ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t);
try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
}
return 0;
}
由此我们也找到了accept,藏的还挺深,调用accept之后我们拿到具体对接客户端连接的socket绑定到一个work线程,放入list buf中。接着我们回到上层的read方法。
一步步调用到了这里。
public void channelRead(ChannelHandlerContext ctx, Object msg) {
Channel child = (Channel) msg;
child.pipeline().addLast(childHandler);
for (Entry<ChannelOption<?>, Object> e: childOptions) {
try {
if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) {
logger.warn("Unknown channel option: " + e);
}
} catch (Throwable t) {
logger.warn("Failed to set a channel option: " + child, t);
}
}
for (Entry<AttributeKey<?>, Object> e: childAttrs) {
child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
}
child.unsafe().register(child.newPromise());
}
首先是这句 "child.pipeline().addLast(childHandler);" 很熟悉不是吗,childHandler是开头我们调用ServerBootstrap的childHandler方法传入的处理对象,接下来设置好socket属性
查看register实现。
public final void register(final ChannelPromise promise) {
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
promise.setFailure(t);
}
}
}
向eventLoop投递了一个register事件,在eventLoop(NioEventLoop)线程(此时的eventLoop是workerGroup中的线程)中,将会把这个SocketChannel也注册到eventLoop中的selector,注意到这里实现和我们原生的nio调用有区别,每个线程都启用了一个Selector对象来轮询事件。
接下来我们回到开头的demo程序,看看bind做了什么
public ChannelFuture bind(SocketAddress localAddress) {
validate();//判断参数合法性
if (localAddress == null) {
throw new NullPointerException("localAddress");
}
return doBind(localAddress);
}
看doBind
private ChannelFuture doBind(final SocketAddress localAddress) {
final ChannelFuture regFuture = initAndRegister();
final Channel channel = regFuture.channel();
if (regFuture.cause() != null) {
return regFuture;
}
final ChannelPromise promise;
if (regFuture.isDone()) {
promise = channel.newPromise();
doBind0(regFuture, channel, localAddress, promise);
} else {
// Registration future is almost always fulfilled already, but just in case it's not.
promise = new DefaultChannelPromise(channel, GlobalEventExecutor.INSTANCE);
regFuture.addListener(new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
doBind0(regFuture, channel, localAddress, promise);
}
});
}
return promise;
}
初始化了一个Channel,并将其绑定到boss线程。我们进一步看下initAndRegister
final ChannelFuture initAndRegister() {
Channel channel;
try {
channel = createChannel();
} catch (Throwable t) {
return VoidChannel.INSTANCE.newFailedFuture(t);
}
try {
init(channel);
} catch (Throwable t) {
channel.unsafe().closeForcibly();
return channel.newFailedFuture(t);
}
ChannelPromise regFuture = channel.newPromise();
channel.unsafe().register(regFuture);
if (regFuture.cause() != null) {
if (channel.isRegistered()) {
channel.close();
} else {
channel.unsafe().closeForcibly();
}
}
// If we are here and the promise is not failed, it's one of the following cases:
// 1) If we attempted registration from the event loop, the registration has been completed at this point.
// i.e. It's safe to attempt bind() or connect() now beause the channel has been registered.
// 2) If we attempted registration from the other thread, the registration request has been successfully
// added to the event loop's task queue for later execution.
// i.e. It's safe to attempt bind() or connect() now:
// because bind() or connect() will be executed *after* the scheduled registration task is executed
// because register(), bind(), and connect() are all bound to the same thread.
return regFuture;
}
进一步分为三个步骤,createChannel,init和register。
Channel createChannel() {
EventLoop eventLoop = group().next();
return channelFactory().newChannel(eventLoop, childGroup);
}
void init(Channel channel) throws Exception {
final Map<ChannelOption<?>, Object> options = options();
synchronized (options) {
channel.config().setOptions(options);
}
final Map<AttributeKey<?>, Object> attrs = attrs();
synchronized (attrs) {
for (Entry<AttributeKey<?>, Object> e: attrs.entrySet()) {
@SuppressWarnings("unchecked")
AttributeKey<Object> key = (AttributeKey<Object>) e.getKey();
channel.attr(key).set(e.getValue());
}
}
ChannelPipeline p = channel.pipeline();
if (handler() != null) {
p.addLast(handler());
}
final ChannelHandler currentChildHandler = childHandler;
final Entry<ChannelOption<?>, Object>[] currentChildOptions;
final Entry<AttributeKey<?>, Object>[] currentChildAttrs;
synchronized (childOptions) {
currentChildOptions = childOptions.entrySet().toArray(newOptionArray(childOptions.size()));
}
synchronized (childAttrs) {
currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(childAttrs.size()));
}
p.addLast(new ChannelInitializer<Channel>() {
@Override
public void initChannel(Channel ch) throws Exception {
ch.pipeline().addLast(new ServerBootstrapAcceptor(currentChildHandler, currentChildOptions,
currentChildAttrs));
}
});
}
根据createChannel的实现所示,ServerBootstrap.channel设置进来的Channel类型派上用场了。这里将bossGroup中的NioeventLoop绑定到
创建出来的channel中,为什么也同时绑了workerGroup呢,因为这个ServerChannel接收到的客户端连接要抛给指定的worker处理呀。
init函数完成了setoption,及给ServerChannel的pipline绑定了对于的处理ChannelHandler。
接下来我们着重看下register的实现。
public final void register(final ChannelPromise promise) {
if (eventLoop.inEventLoop()) {
register0(promise);
} else {
try {
eventLoop.execute(new Runnable() {
@Override
public void run() {
register0(promise);
}
});
} catch (Throwable t) {
logger.warn(
"Force-closing a channel whose registration task was not accepted by an event loop: {}",
AbstractChannel.this, t);
closeForcibly();
closeFuture.setClosed();
promise.setFailure(t);
}
}
}
private void register0(ChannelPromise promise) {
try {
// check if the channel is still open as it could be closed in the mean time when the register
// call was outside of the eventLoop
if (!ensureOpen(promise)) {
return;
}
doRegister();
registered = true;
promise.setSuccess();
pipeline.fireChannelRegistered();
if (isActive()) {
pipeline.fireChannelActive();
}
} catch (Throwable t) {
// Close the channel directly to avoid FD leak.
closeForcibly();
closeFuture.setClosed();
if (!promise.tryFailure(t)) {
logger.warn(
"Tried to fail the registration promise, but it is complete already. " +
"Swallowing the cause of the registration failure:", t);
}
}
}
终于看到了调用了eventLoop.execute方法。这里由于不是Eventloop的内部线程因此会走到execute的逻辑。结合我们之前对NioEventLoop的分析,首次调用会创建一个新的线程来执行投递进去Runnable对象的run方法,最后执行了ServerChannel的注册逻辑。注意到传进去的promise是一个future对象,在注册成功以后,可以由其他线程通过promise看到是否执行完成
至此,我们总结一下。
ServerBootstrap设置了两个线程组,bossGroup和workerGroup,每个线程内部均有一个selector循环地执行select函数来查找监听的事件。正常场景下,我们应该只有一个监听端口,此时bossGroup仅有一个线程在工作。
boss线程的selector只绑定了一个ServerSocketChannel,当其accept到一个客户端连接以后,会调用线程组的next()函数获取一个NioEventLoop来将SocketChannel放入worker中执行逻辑。
同时NioEventLoop还有一个execute方法,支持了其他线程往内部线程抛入Runnable任务。这个主要场景是boss线程检测到有新连接到来时,将channel注册到worker线程组。以及用户线程函数在调用ServerBootstrap的bind
时注册serverChannel到boss线程。
还需要扩展认识的部分
还是有许多疑惑,数据的拆分包的实现原理是怎样的,ChannelHandler处理数据的流程,添加多个ChannelHandler时如何工作。下回合分析。
网友评论