美文网首页
Coursera代码笔记:Getting and cleanin

Coursera代码笔记:Getting and cleanin

作者: MC1229 | 来源:发表于2016-08-21 21:11 被阅读50次

    1. Subsetting and Sorting

    set.seed(13435)

    X<data.frame("var1"=sample(1:5),"var2"=sample(6:10),"var3"=sample(11:15))

    X<-X[sample(1:5),];X$var2[c(1,3)]=NA #更改X

    X

    X[,1]

    X[,"var1"]

    X[1:2,"var2"]

    Logicals ands and ors  (选择)

    X[(X$var1<=3&X$var3>11),]

    X[(X$var1<=3|X$var3>15),]

    Dealing with missing values

    X[which(X$var2>8),]

    Sorting

    sort(X$var1)

    sort(X$var1,decreasing=TRUE)

    sort(X$var2,na.last=TRUE)

    Ordering

    X[order(X$var1),]

    X[order(X$var1,X$var3),]

    Ordering with plyr

    library(plyr)

    arrange(X,var1)

    arrange(X,desc(var1))

    Adding rows and columns

    X$var4<-rnorm(5)  #将var4加入

    X

    Y<-cbind(X,rnorm(5))

    Y

    2.Summarizing Data

    Getting the data from the web

    if(!file.exists("./data")){dir.create("./data")}

    fileUrl<-"https://data.baltimorecity.gov/api/views/k5ry-ef3g/rows.csv?accessType=DOWNLOAD"

    download.file(fileUrl,destfile="./data/restaurants.csv",method="curl")

    restData<-read.csv("./data/restaurants.csv")

    Look a bit at the data

    head(restData,n=3)  #查看前三行数据

    tail(restData,n=3)  #查看后三行数据

    Make summary

    summary(restData)

    str(restData)  #看更深的数据

    quantile(restData$councilDistrict,na.rm=TRUE) #看分位数

    quantile(restData$councilDistrict,probs=c(0.5,0.75,0.9))

    Make table

    table(restData$zipCode,useNA="ifany")

    table(restData$councilDistrict,restData$zipCode)

    Check for missing values

    sum(is.na(restData$councilDistrict))

    any(is.na(restData$councilDistrict))

    all(restData$zipCode>0)

    Row and column sums

    colSums(is.na(restData))

    all(colSums(is.na(restData))==0)  #返回TRUE/FALSE

    Values with specific characteristics

    table(restData$zipCode%in%c("21212"))

    table(restData$zipCode%in%c("21212","21213"))

    Values with specific characteristics

    restData[restData$zipCode%in%c("21212","21213"),]

    Cross tabs  #把数据根据变量分组查看 

    data(UCBAdmissions)

    DF=as.data.frame(UCBAdmissions)

    summary(DF)

    xt<-xtabs(Freq~Gender+Admit,data=DF)

    xt

    Admit

    Gender  Admitted Rejected

    Male      1198    1493

    Female      557    1278

    Flat tables

    warpbreaks$replicate<-rep(1:9,len=54)

    xt=xtabs(breaks~.,data=warpbreaks)

    xt

    Flat tables

    Size of a data set

    fakeData=rnorm(1e5)

    object.size(fakeData)

    print(object.size(fakeData),units="Mb")

    3. Creating New Variables

    Getting data from the web

    if(!file.exists("./data")){dir.create("./data")}

    fileUrl<-"https://data.baltimorecity.gov/api/views/k5ry-ef3g/rows.csv?accessType=DOWNLOAD"

    download.file(fileUrl,destfile="./data/restaurants.csv",method="curl")

    restData<-read.csv("./data/restaurants.csv")

    Creating sequences

    Sometimes you need an index for your data set

    s1<-seq(1,10,by=2) ;s1

    [1] 1 3 5 7 9

    s2<-seq(1,10,length=3);s2

    [1]  1.0  5.5 10.0

    x<-c(1,3,8,25,100); seq(along=x)

    [1] 1 2 3 4 5

    Subsetting variables

    restData$nearMe=restData$neighborhood%in%c("Roland Park","Homeland")

    table(restData$nearMe)

        FALSE  TRUE

        1314    13

    Creating binary variables

    restData$zipWrong=ifelse(restData$zipCode<0,TRUE,FALSE)

    table(restData$zipWrong,restData$zipCode<0)

              FALSE TRUE

    FALSE  1326    0

    TRUE      0       1

    Creating categorical variables

    restData$zipGroups=cut(restData$zipCode,breaks=quantile(restData$zipCode))

    table(restData$zipGroups)

    table(restData$zipGroups,restData$zipCode)

    Easier cutting

    library(Hmisc)

    restData$zipGroups=cut2(restData$zipCode,g=4)

    table(restData$zipGroups)

    Creating factor variables

    restData$zcf<-factor(restData$zipCode)

    restData$zcf[1:10]

    class(restData$zcf)

    [1] "factor"

    Levels of factor variables

    yesno<-sample(c("yes","no"),size=10,replace=TRUE)

    yesnofac=factor(yesno,levels=c("yes","no"))

    relevel(yesnofac,ref="no")

    [1] yes yes yes yes no  yes yes yes no  no

    Levels: no yes

    as.numeric(yesnofac)

    [1] 1 1 1 1 2 1 1 1 2 2

    Cutting produces factor variables

    library(Hmisc)

    restData$zipGroups=cut2(restData$zipCode,g=4)

    table(restData$zipGroups)

    [-21226,21205) [ 21205,21220) [ 21220,21227) [ 21227,21287]

    338            375            300            314

    Using the mutate function

    library(Hmisc); library(plyr)

    restData2=mutate(restData,zipGroups=cut2(zipCode,g=4))

    table(restData2$zipGroups)

    [-21226,21205) [ 21205,21220) [ 21220,21227) [ 21227,21287]

    338            375            300            314

    Common transforms

    abs(x)  absolute value

    sqrt(x)  square root

    ceiling(x)  ceiling(3.475) is 4

    floor(x)  floor(3.475) is 3

    round(x,digits=n)  round(3.475,digits=2) is 3.48

    signif(x,digits=n)  signif(3.475,digits=2) is 3.5

    cos(x), sin(x) etc.

    log(x) natural logarithm

    log2(x),log10(x)other common logs

    exp(x) exponentiating x

    4. Reshaping Data

    Start with reshaping

    library(reshape2)

    head(mtcars)    #返回一组以车辆型号为obs的序列,var有各型号的马力数据

    相关文章

      网友评论

          本文标题:Coursera代码笔记:Getting and cleanin

          本文链接:https://www.haomeiwen.com/subject/itdisttx.html