是否对称树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
def isSym(left,right):
if not left and not right: return True
if not left and right: return False
if left and not right: return False
if left.val !=right.val:return False
return isSym(left.left,right.right) and isSym(left.right,right.left)
if not root:
return True
return isSym(root.left,root.right)
是否相同
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if p is None and q is not None: return False
if p is None and q is None: return True
if p is not None and q is None: return False
if p.val != q.val:
return False
return self.isSameTree(p.left,q.left) and self.isSameTree(p.right,q.right)
中序遍历
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
result = []
def inorder(root):
if root:
inorder(root.left)
result.append(root.val)
inorder(root.right)
inorder(root)
return result
二叉树的最大深度
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
if not root:
return 0
return max(self.maxDepth(root.left),self.maxDepth(root.right)) + 1
二叉树的层序遍历
输入:root = [3,9,20,null,null,15,7]
输出:[[3],[9,20],[15,7]]
# 二叉树
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
if not root:
return []
queue = []
queue.append(root)
res = []
while queue:
ll = []
for i in range(len(queue)):
q = queue.pop(0)
ll.append(q.val)
if q.left:
queue.append(q.left)
if q.right:
queue.append(q.right)
res.append(ll)
return res
前序与中序遍历序列构造二叉树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:
if inorder:
# 获取根节点
idx = inorder.index(preorder.pop(0))
root = TreeNode(inorder[idx])
# 通过中序遍历将二叉树的左右节点分开,中序遍历的左边为左节点,右边为右节点
root.left = self.buildTree(preorder, inorder[0:idx])
root.right = self.buildTree(preorder, inorder[idx+1:])
return root
从中序与后序遍历序列构造二叉树
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
if inorder:
val = postorder[-1]
n = inorder.index(val)
root = TreeNode(val)
root.left = self.buildTree(inorder[0:n],postorder[0:n])
root.right = self.buildTree(inorder[n+1:],postorder[n:-1])
return root
# val = postorder[-1]
# n = inorder.index(val)
# root = TreeNode(val)#创建树
# root.left = self.buildTree(inorder[:n],postorder[:n])
# root.right = self.buildTree(inorder[n+1:],postorder[n:-1])
# return root
翻转二叉树
class Solution:
def invertTree(self, root: TreeNode) -> TreeNode:
if root:
rmp = root.left
root.left=root.right
root.right=rmp
self.invertTree(root.left)
self.invertTree(root.right)
return root
二叉树的最小深度
class Solution:
def minDepth(self, root: TreeNode) -> int:
if not root: return 0
stack, ans = deque([root]), 1
while stack:
node_num = len(stack)
for _ in range(node_num):
node = stack.popleft()
if not node.left and not node.right:
return ans
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
ans += 1
网友评论