美文网首页
35 Pandas实现groupby聚合后不同列数据统计

35 Pandas实现groupby聚合后不同列数据统计

作者: Viterbi | 来源:发表于2022-11-27 22:25 被阅读0次

    35 Pandas实现groupby聚合后不同列数据统计

    电影评分数据集(UserID,MovieID,Rating,Timestamp)

    聚合后单列-单指标统计:每个MovieID的平均评分 df.groupby(“MovieID”)[“Rating”].mean()

    聚合后单列-多指标统计:每个MoiveID的最高评分、最低评分、平均评分
    df.groupby(“MovieID”)[“Rating”].agg(mean=“mean”, max=“max”, min=np.min) df.groupby(“MovieID”).agg({“Rating”:[‘mean’, ‘max’, np.min]})

    聚合后多列-多指标统计:每个MoiveID的评分人数,最高评分、最低评分、平均评分
    df.groupby(“MovieID”).agg(
    rating_mean=(“Rating”, “mean”),
    user_count=(“UserID”, lambda x : x.nunique())
    df.groupby(“MovieID”).agg(
    {“Rating”: [‘mean’, ‘min’, ‘max’],
    “UserID”: lambda x :x.nunique()})
    df.groupby(“MovieID”).apply(
    lambda x: pd.Series( {“min”: x[“Rating”].min(), “mean”: x[“Rating”].mean()}))

    记忆:agg(新列名=函数)、agg(新列名=(原列名,函数))、agg({“原列名”:函数/列表}) agg函数的两种形式,等号代表“把结果赋值给新列”,字典/元组代表“对这个列运用这些函数”

    官网文档:https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.groupby.DataFrameGroupBy.agg.html

    读取数据

    import pandas as pd
    import numpy as np
    
    df = pd.read_csv(
        "./datas/movielens-1m/ratings.dat", 
        sep="::",
        engine='python', 
        names="UserID::MovieID::Rating::Timestamp".split("::")
    )
    
    df.head(3)
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    UserID MovieID Rating Timestamp
    0 1 1193 5 978300760
    1 1 661 3 978302109
    2 1 914 3 978301968

    聚合后单列-单指标统计

    # 每个MovieID的平均评分
    result = df.groupby("MovieID")["Rating"].mean()
    result.head()
    
        MovieID
        1    4.146846
        2    3.201141
        3    3.016736
        4    2.729412
        5    3.006757
        Name: Rating, dtype: float64
    
    
    type(result)
    
    
        pandas.core.series.Series
    
    

    聚合后单列-多指标统计

    每个MoiveID的最高评分、最低评分、平均评分

    方法1:agg函数传入多个结果列名=函数名形式

    result = df.groupby("MovieID")["Rating"].agg(
        mean="mean", max="max", min=np.min
    )
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    mean max min
    MovieID
    1 4.146846 5 1
    2 3.201141 5 1
    3 3.016736 5 1
    4 2.729412 5 1
    5 3.006757 5 1

    方法2:agg函数传入字典,key是column名,value是函数列表

    # 每个MoiveID的最高评分、最低评分、平均评分
    result = df.groupby("MovieID").agg(
        {"Rating":['mean', 'max', np.min]}
    )
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead tr th { text-align: left; } .dataframe thead tr:last-of-type th { text-align: right; } </code></pre>
    Rating
    mean max amin
    MovieID
    1 4.146846 5 1
    2 3.201141 5 1
    3 3.016736 5 1
    4 2.729412 5 1
    5 3.006757 5 1
    result.columns = ['age_mean', 'age_min', 'age_max']
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    age_mean age_min age_max
    MovieID
    1 4.146846 5 1
    2 3.201141 5 1
    3 3.016736 5 1
    4 2.729412 5 1
    5 3.006757 5 1

    聚合后多列-多指标统计

    每个MoiveID的评分人数,最高评分、最低评分、平均评分

    方法1:agg函数传入字典,key是原列名,value是原列名和函数元组

    # 回忆:agg函数的两种形式,等号代表“把结果赋值给新列”,字典/元组代表“对这个列运用这些函数”
    result = df.groupby("MovieID").agg(
            rating_mean=("Rating", "mean"),
            rating_min=("Rating", "min"),
            rating_max=("Rating", "max"),
            user_count=("UserID", lambda x : x.nunique())
    )
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    rating_mean rating_min rating_max user_count
    MovieID
    1 4.146846 1 5 2077
    2 3.201141 1 5 701
    3 3.016736 1 5 478
    4 2.729412 1 5 170
    5 3.006757 1 5 296

    方法2:agg函数传入字典,key是原列名,value是函数列表

    统计后是二级索引,需要做索引处理

    result = df.groupby("MovieID").agg(
        {
            "Rating": ['mean', 'min', 'max'],
            "UserID": lambda x :x.nunique()
        }
    )
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead tr th { text-align: left; } .dataframe thead tr:last-of-type th { text-align: right; } </code></pre>
    Rating UserID
    mean min max <lambda>
    MovieID
    1 4.146846 1 5 2077
    2 3.201141 1 5 701
    3 3.016736 1 5 478
    4 2.729412 1 5 170
    5 3.006757 1 5 296
    result["Rating"].head(3)
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    mean min max
    MovieID
    1 4.146846 1 5
    2 3.201141 1 5
    3 3.016736 1 5
    result.columns = ["rating_mean", "rating_min","rating_max","user_count"]
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    rating_mean rating_min rating_max user_count
    MovieID
    1 4.146846 1 5 2077
    2 3.201141 1 5 701
    3 3.016736 1 5 478
    4 2.729412 1 5 170
    5 3.006757 1 5 296

    方法3:使用groupby之后apply对每个子df单独统计

    def agg_func(x):
        """注意,这个x是子DF"""
        
        # 这个Series会变成一行,字典KEY是列名
        return pd.Series({
            "rating_mean": x["Rating"].mean(),
            "rating_min": x["Rating"].min(),
            "rating_max": x["Rating"].max(),
            "user_count": x["UserID"].nunique()
        })
    
    result = df.groupby("MovieID").apply(agg_func)
    result.head()
    
    .dataframe tbody tr th:only-of-type { vertical-align: middle; } <pre><code>.dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </code></pre>
    rating_mean rating_min rating_max user_count
    MovieID
    1 4.146846 1.0 5.0 2077.0
    2 3.201141 1.0 5.0 701.0
    3 3.016736 1.0 5.0 478.0
    4 2.729412 1.0 5.0 170.0
    5 3.006757 1.0 5.0 296.0

    本文使用 文章同步助手 同步

    相关文章

      网友评论

          本文标题:35 Pandas实现groupby聚合后不同列数据统计

          本文链接:https://www.haomeiwen.com/subject/iufmtdtx.html