美文网首页Kafka
Kafka源码分析(三)高吞吐核心——RecordAccumul

Kafka源码分析(三)高吞吐核心——RecordAccumul

作者: 81e2cd2747f1 | 来源:发表于2020-02-28 14:54 被阅读0次

    Kafka为什么会有这么高吞吐?

    Kafka的发送逻辑和TCP的像极了,当客户端调用了producer.send(msg)后,Kafka的主线程并不会着急直接调用网络底层将消息发送给Kafka Broker,而是将消息放入一个叫RecordAccumulator的数据结构中。

    RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
        serializedValue, headers, interceptCallback, remainingWaitMs);
    

    其实放入RecordAccumulator中只是第一步,接下去真实的发送逻辑甚至不在当前的主线程中,所以发送逻辑整体是以异步调用的方式来组织的。当消息真正被网络层发送并且得到Broker的成功反馈后,是通过Future的形式来通知回调,所以为了不丢失异步链路,在放入RecordAccumulator后,有个RecordAppendResult的返回值。

    回过来再看下RecordAccumulator这个数据结构。

    如下图所示,RecordAccumulator整体是一个ConcurrentMap<TopicPartition, Deque<ProducerBatch>>混合数据机构,Key就是TopicPartition,Value是一个双向队列Deque,队列的成员是一个个ProducerBatch。

    RecordAccumulator

    举个栗子,如果是发送TopicPartition(topic1:0)的消息,逻辑可以简述为,首先去找TopicPartition(topic1:0)这个Key所对应的那个Deque队列(如果没有则创建一个),然后从Deque中拿到最后一个ProducerBatch对象,最后将消息放入最后一个ProducerBatch中。

    private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers,
                                            Callback callback, Deque<ProducerBatch> deque) {
        ProducerBatch last = deque.peekLast();
        if (last != null) {
            FutureRecordMetadata future = last.tryAppend(timestamp, key, value, headers, callback, time.milliseconds());
            if (future == null)
                last.closeForRecordAppends();
            else
                return new RecordAppendResult(future, deque.size() > 1 || last.isFull(), false);
        }
        return null;
    }
    

    可见ProducerBatch也是一个容器型数据结构,从下面的代码可以看出,消息的数据是按顺序放入(MemoryRecordsBuilder recordsBuilder)中,消息的事件回调future是按顺序放入(List<Thunk> thunks)中。

    public FutureRecordMetadata tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers, Callback callback, long now) {
        if (!recordsBuilder.hasRoomFor(timestamp, key, value, headers)) {
            return null;
        } else {
            Long checksum = this.recordsBuilder.append(timestamp, key, value, headers);
            this.maxRecordSize = Math.max(this.maxRecordSize, AbstractRecords.estimateSizeInBytesUpperBound(magic(),
                    recordsBuilder.compressionType(), key, value, headers));
            this.lastAppendTime = now;
            FutureRecordMetadata future = new FutureRecordMetadata(this.produceFuture, this.recordCount,
                                                                    timestamp, checksum,
                                                                    key == null ? -1 : key.length,
                                                                    value == null ? -1 : value.length);
            // we have to keep every future returned to the users in case the batch needs to be
            // split to several new batches and resent.
            thunks.add(new Thunk(callback, future));
            this.recordCount++;
            return future;
        }
    }
    

    至此,放入RecordAccumulator的过程算是讲完了,下一篇聊下从RecordAccumulator拿出来。

    在结束这篇前,有几点注意下,Map是Concurrent系的,所以在TopicPartition级别是可以安全并发put、get、remove它的Deque。但是当涉及到的是同一个TopicPartition时,操纵的其实是同一个Deque,而Deque不是一个并发安全的集合,所以在对某一个具体的Deque进行增删改时,需要使用锁。

    Deque<ProducerBatch> dq = getOrCreateDeque(tp);
    
    synchronized (dq) {
        // Need to check if producer is closed again after grabbing the dequeue lock.
        if (closed)
            throw new KafkaException("Producer closed while send in progress");
    
        RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
        if (appendResult != null) {
            // Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...
            return appendResult;
        }
    
        MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
        ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
        FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));
    
        dq.addLast(batch);
        incomplete.add(batch);
    
        // Don't deallocate this buffer in the finally block as it's being used in the record batch
        buffer = null;
    
        return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
    }
    

    相关文章

      网友评论

        本文标题:Kafka源码分析(三)高吞吐核心——RecordAccumul

        本文链接:https://www.haomeiwen.com/subject/ivrspctx.html