Kafka为什么会有这么高吞吐?
Kafka的发送逻辑和TCP的像极了,当客户端调用了producer.send(msg)后,Kafka的主线程并不会着急直接调用网络底层将消息发送给Kafka Broker,而是将消息放入一个叫RecordAccumulator的数据结构中。
RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
serializedValue, headers, interceptCallback, remainingWaitMs);
其实放入RecordAccumulator中只是第一步,接下去真实的发送逻辑甚至不在当前的主线程中,所以发送逻辑整体是以异步调用的方式来组织的。当消息真正被网络层发送并且得到Broker的成功反馈后,是通过Future的形式来通知回调,所以为了不丢失异步链路,在放入RecordAccumulator后,有个RecordAppendResult的返回值。
回过来再看下RecordAccumulator这个数据结构。
如下图所示,RecordAccumulator整体是一个ConcurrentMap<TopicPartition, Deque<ProducerBatch>>混合数据机构,Key就是TopicPartition,Value是一个双向队列Deque,队列的成员是一个个ProducerBatch。
RecordAccumulator举个栗子,如果是发送TopicPartition(topic1:0)的消息,逻辑可以简述为,首先去找TopicPartition(topic1:0)这个Key所对应的那个Deque队列(如果没有则创建一个),然后从Deque中拿到最后一个ProducerBatch对象,最后将消息放入最后一个ProducerBatch中。
private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers,
Callback callback, Deque<ProducerBatch> deque) {
ProducerBatch last = deque.peekLast();
if (last != null) {
FutureRecordMetadata future = last.tryAppend(timestamp, key, value, headers, callback, time.milliseconds());
if (future == null)
last.closeForRecordAppends();
else
return new RecordAppendResult(future, deque.size() > 1 || last.isFull(), false);
}
return null;
}
可见ProducerBatch也是一个容器型数据结构,从下面的代码可以看出,消息的数据是按顺序放入(MemoryRecordsBuilder recordsBuilder)中,消息的事件回调future是按顺序放入(List<Thunk> thunks)中。
public FutureRecordMetadata tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers, Callback callback, long now) {
if (!recordsBuilder.hasRoomFor(timestamp, key, value, headers)) {
return null;
} else {
Long checksum = this.recordsBuilder.append(timestamp, key, value, headers);
this.maxRecordSize = Math.max(this.maxRecordSize, AbstractRecords.estimateSizeInBytesUpperBound(magic(),
recordsBuilder.compressionType(), key, value, headers));
this.lastAppendTime = now;
FutureRecordMetadata future = new FutureRecordMetadata(this.produceFuture, this.recordCount,
timestamp, checksum,
key == null ? -1 : key.length,
value == null ? -1 : value.length);
// we have to keep every future returned to the users in case the batch needs to be
// split to several new batches and resent.
thunks.add(new Thunk(callback, future));
this.recordCount++;
return future;
}
}
至此,放入RecordAccumulator的过程算是讲完了,下一篇聊下从RecordAccumulator拿出来。
在结束这篇前,有几点注意下,Map是Concurrent系的,所以在TopicPartition级别是可以安全并发put、get、remove它的Deque。但是当涉及到的是同一个TopicPartition时,操纵的其实是同一个Deque,而Deque不是一个并发安全的集合,所以在对某一个具体的Deque进行增删改时,需要使用锁。
Deque<ProducerBatch> dq = getOrCreateDeque(tp);
synchronized (dq) {
// Need to check if producer is closed again after grabbing the dequeue lock.
if (closed)
throw new KafkaException("Producer closed while send in progress");
RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);
if (appendResult != null) {
// Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...
return appendResult;
}
MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);
ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());
FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));
dq.addLast(batch);
incomplete.add(batch);
// Don't deallocate this buffer in the finally block as it's being used in the record batch
buffer = null;
return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);
}
网友评论