美文网首页
从“怎么想的”到“怎么想到的”

从“怎么想的”到“怎么想到的”

作者: Lq雯_ | 来源:发表于2018-11-20 22:32 被阅读0次

          金秋十月,踏着京郊遍地金黄的银杏叶,深圳市光明区小学数学骨干教师一行50人在首都师范大学附属顺义实验小学开启了为期五天的“儿童数学教育”浸润之旅。

          本期培训围绕“数运算”和“图形与几何”两个领域开展课例研修和专题讲座,可谓精彩、震撼!但是,我们时常感慨名师的课例“只可远观而不可模仿”,难以灵活应用到自己的课堂中。因此,本次学习我重在思考名师好课背后的价值,即我们向好课学什么。其中,给我带来触动最大的有这样的三个“镜头”。


    一、乘法运算——“分与合”,早渗透

          在小学数学教材中,整数的乘法运算分为四大阶段:表内乘法、两三位数乘一位数、两位数乘两位数、三位数乘两位数,之后便有五大运算定律的学习。其中,乘法分配律因其包含了两级运算,模型更复杂、应用更灵活,成为了教与学的难点。在培训现场,著名特级教师吴正宪老师执教《两位数乘两位数》、光明区实验学校梁艳老师执教《6的乘法口诀》,让我对乘法分配律的教学有了新的想法,那就是要尽早渗透“分与合”的思想。

          在乘法口诀教学中,学生具备迁移能力,习惯用相邻口诀之间的关系推导出新口诀,比如,如果忘记六七(  ),孩子们会借助“五七三十五”,在5个7的基础上在添上1个7。但如果总是只借用相邻口诀,学生的思考深度就不够。在《6的乘法口诀》课中,梁艳老师设计了“点子图”,让学生在看一看、圈一圈、说一说的过程中体会到,6个7还可以分成2个7和4个7,把“二七十四”和“四七二十八”加起来,也可以得到“六七四十二”。这个环节给了我很大的触动——原来,“乘法分配律”在二年级就来到了孩子们的身边!就在这“分与合”的过程中,既加深了对乘法意义的本质理解,又渗透了乘法分配律。

    乘法口诀中的“乘法分配律”思想

          在《两位数乘两位数》的学习中,吴正宪老师设计了12×14的点子图,帮助学生在圈一圈的过程中感悟算理,提炼算法,有这样一个片段:

    师:(指着14×12的竖式)我们明明在算14×12,乘就乘吧,最后为什么还要加呢?

    生:因为我们把12拆开了。

    生:对。我们把12个14拆成了10个14和2个14,最后就要把它们加起来,才是12个14。

    师:那看看你们画的点子图,这个圈表示什么?

    生:2个14。

    师:这个圈呢?

    生:10个14。

    师:看来我们还得再怎么样?

    生:画一个大圈,才表示加起来。

    蓝色的“大圈”很重要

          在往常的教学中,我们通常只在点子图上画了两个小圈,却从没考虑过补上最后的“大圈”,这就相当于“只分不合”。而在乘法的运算教学中,“分与合”的思想是贯穿始终的,虽然此时我们还没有搬出“乘法分配律”的大名,但我们要尽早渗透这种思想,让学生感悟模型、建构模型。


    二、除法运算——“分”是核心,细分单位

          还记得刚入职那年,教学四年级的《除数是两位数的除法》,有学生问我,“为什么乘法竖式从个位算起,除法竖式却从高位算起呢?”是呀,为什么呢?在吴正宪老师执教的《小数除法》一课中,我似乎找到了除法不得不从高位算起的理由。

          吴老师以“4个人吃饭,花了97元,AA制,每人要付多少元?”的情境引入,简单而又直接。面对“97÷4=24(元)……1(元)”的解答结果,许多孩子陷入了思考:AA制,这1元该怎么分呢?这就把孩子们的经验从“有余数的除法”对接到今天要学习的“小数除法”——把余数不停地往下分。余下的1元平均分给4个人,每人不够1元,于是要把“元”这个单位“细分”,变成“10角”。10÷4=2(角)……2(角),余下的2角又不够每人分1角,于是要把“角”这个单位再“细分”。之后,吴老师又去掉“元角分”的模型,带领孩子们从小数的意义、位值、计数单位的角度出发,再次探索 “97÷4” 的算理和算法,经历了1不够除以4、就细分成10个0.1,0.1不够除以4、就细分成10个0.01的过程。

    细分单位 脱离情境,追溯数的意义

          我相信,虽然吴老师没有道破小数除法的本质,但是小数点是每当遇到不够除又必须继续除时的“定海神针”这一点,学生的感受是非常深刻的。


    三、复习课——拒绝“冷饭”,推陈出新

          “复习课难上”,是许多数学老师一致的感叹。在复习教学中,教师往往会把学过的知识再梳理讲解一遍,然后陷入“出题、做题、讲题、再做题”的题海怪圈。在上期培训中,北京教科院小学数学教研员刘延革老师执教六年级的《几何形体的体积》复习课,将长方体、正方体、圆柱、圆锥等学生已学过的形体顺利对接到生活中常见的柱体、椎体,打通了几何形体体积的内涵及计算公式背后的意义,也让学员们感受到什么叫“温故知新”——既有对已学过知识的整理,又有新的内容和生长点,完善了学生的知识结构体系。

    刘延革老师打通几何形体体积的奥秘

          在本次培训中,首师大附小的蔡劲老师以一节五年级的《小数乘法复习课》,又一次印证了复习课“推陈出新”的重要性。蔡劲老师设计了我们熟悉的方格图(10×10),通过让学生自己确定每一格的单位长度,涂一涂、画一画,计算6个小方格的面积,把整数乘法和小数乘法勾联起来。同样是6个小方格,它可以表示20×30、2×3、0.2×0.3,……变的是计数单位,不变的是计数单位的个数,让学生体会到,小数乘法为什么要“先按整数乘法计算,再看乘数有几位小数,就在积的末尾数出几位小数”,前者是算计数单位的个数,后者是确定计数单位。

    一格表示几?红色长方形的面积呢?

          像这样,既有对知识的巩固梳理,又有新旧知识之间的整体勾联,让学生在整理的基础上有了“新”的收获,让认知结构又具备了生长活力。同样,《分数乘法》的复习课设计也呼之欲出了。


          五天的课程,呈现了许多值得借鉴的好课。北京顺义区小学数学教研员张秋爽老师提到,在课堂上,我们经常问学生“你是怎么想的”,却很少追问“你是怎么想到的”,而偏偏后者是更为重要的。同理,教师观摩一节好课,也不能仅停留在看看“别人是怎么想的”,更要深入思考“别人是怎么想到的”。这几位老师是能想到这样设计教学,我认为,离不开他们对知识本质的深度研究和思考。因此,我们要从日常点滴做起,有意识地深入研究某个、某类知识的本质,整体把握知识结构,才能上出有思维深度的课。

    (深圳市光明新区爱华小学  赖琪雯)

    相关文章

      网友评论

          本文标题:从“怎么想的”到“怎么想到的”

          本文链接:https://www.haomeiwen.com/subject/ivrxqqtx.html