美文网首页
7 支持向量机SMO算法(python代码)

7 支持向量机SMO算法(python代码)

作者: 奋斗的喵儿 | 来源:发表于2021-04-21 16:26 被阅读0次

    原理参考:https://zhuanlan.zhihu.com/p/77750026
    SMO算法python代码
    公式参考统计学习方法第7章

    import numpy as np
    import pandas as pd
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    import math
    
    def create_data():
        iris = load_iris()
        df=pd.DataFrame(iris.data,columns=iris.feature_names)
        df['label']=iris.target
        df.columns=['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
        data=np.array(df.iloc[:100,[0,1,-1]])
        for i in range(len(data)):
            if data[i,-1]==0:
                data[i,-1]=-1
        return data[:,:2], data[:,-1]
    
    X,y=create_data()
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2)
    
    # SMO算法
    class SVM:
    #     定义最大迭代次数,核函数
        def __init__(self, max_iter, kernel='linear'):
            self.max_iter = max_iter
            self._kernel = kernel
    #     m样本量,n维度,X样本, Y样本类别,b,alpha拉格朗日乘子,E,C
        def init_args(self, features, labels):
            self.m, self.n = features.shape
            self.X = features
            self.Y = labels
            self.b = 0.0
            self.alpha = np.ones(self.m)
            
            # Ei是g(x)预测值-实际值,保存至列表
            self.E = [self._E(i) for i in range(self.m)]
            # 惩罚参数
            self.C=1.0 
     
        # 核函数
        def kernel(self,x1,x2):
            if self._kernel=='linear': #线性分类器 k(x,y)=x*y
                return sum([x1[k]*x2[k] for k in range(self.n)])  
            elif self._kernel=='poly':
                return (sum([x1[k]*x2[k] for k in range(self.n)])+1)**2  #d阶多项式分类器 k(x,y)={(x*y)+1}d
            return 0
    
        def _KKT(self, i):  #p147   7.111~7.113
            y_g = self._g(i)*self.Y[i]
            if self.alpha[i]==0:
                return y_g >=1
            elif 0<self.alpha[i]<self.C:
                return y_g ==1
            else:
                return y_g<=1
        
        # g(x)预测值,输入(X[i])
        def _g(self,i):
            r = self.b
            for j in range(self.m):
                r += self.alpha[j]*self.Y[j]*self.kernel(self.X[i], self.X[j])   # p145 公式7.105   7.117
            return r
        
        # E(x)为g(x)对输入x的预测值和实际值y的差
        def _E(self, i):
            return self._g(i)-self.Y[i]    
        
        
        def _init_alpha(self):
             #外层循环首先遍历所有满足0<a<C的样本点,检验是否满足KKT  P147
            index_list=[i for i in range(self.m) if 0<self.alpha[i]<1]
            # 否则遍历整个训练集
            non_satisfy_list = [i for i in range(self.m) if i not in index_list]
            index_list.extend(non_satisfy_list)
            
            for i in index_list:
                if self._KKT(i):
                    continue
                E1=self.E[i]
                # 如果E1是+,选择最小的;如果E1是负的,选择最大的
                if E1 >= 0:
                    j = min(range(self.m), key=lambda x: self.E[x])
                else:
                    j = max(range(self.m), key=lambda x: self.E[x])
                return i, j
        
        def _compare(self,_alpha, L, H):  #7.108
            if _alpha > H:
                return H
            elif _alpha<L:
                return L
            else:
                return _alpha
            
        def fit(self, features, labels):
            self.init_args(features, labels)   
            for t in range(self.max_iter):    # 迭代
                # train   变量的选择 i1 i2
                i1,i2 = self._init_alpha()
                # 边界  p144~145
                if self.Y[i1]==self.Y[i2]:
                    L = max(0, self.alpha[i1] + self.alpha[i2] - self.C)
                    H = min(self.C, self.alpha[i1] + self.alpha[i2])
                else:
                    L = max(0, self.alpha[i2] - self.alpha[i1])
                    H = min(self.C, self.C + self.alpha[i2] - self.alpha[i1])
                
                E1=self.E[i1]
                E2=self.E[i2]
                # eta = k11+k22-2k12  公式7.107
                eta=self.kernel(self.X[i1],self.X[i1])+self.kernel(self.X[i2],self.X[i2])-2*self.kernel(self.X[i1],self.X[i2])
                if eta<=0:
                    continue
               
                alpha2_new_unc=self.alpha[i2]+self.Y[i2]*(E1-E2)/eta   #7.106
                alpha2_new = self._compare(alpha2_new_unc, L, H)    #7.108
                alpha1_new = self.alpha[i1] + self.Y[i1] * self.Y[i2] * (self.alpha[i2] - alpha2_new)  #7.109
                
                # 7.115
                b1_new = -E1 - self.Y[i1] * self.kernel(self.X[i1], self.X[i1]) * (
                    alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                        self.X[i2],self.X[i1]) * (alpha2_new - self.alpha[i2]) + self.b
                
                # 7.116
                b2_new = -E2 - self.Y[i1] * self.kernel(self.X[i1], self.X[i2]) * (
                    alpha1_new - self.alpha[i1]) - self.Y[i2] * self.kernel(
                        self.X[i2],self.X[i2]) * (alpha2_new - self.alpha[i2]) + self.b
                
                # p148
                if 0 < alpha1_new < self.C:
                    b_new = b1_new
                elif 0 < alpha2_new < self.C:
                    b_new = b2_new
                else:
                    # 选择中点
                    b_new = (b1_new + b2_new) / 2
    
                # 更新参数
                self.alpha[i1] = alpha1_new
                self.alpha[i2] = alpha2_new
                self.b = b_new
    
                self.E[i1] = self._E(i1)
                self.E[i2] = self._E(i2)
            return 'train done!'
        
        def predict(self, data):
            # g(xi)
            r = self.b
            for i in range(self.m):
                r += self.alpha[i] * self.Y[i] * self.kernel(data, self.X[i])
            return 1 if r > 0 else -1
    
        def score(self, X_test, y_test):
            right_count = 0
            for i in range(len(X_test)):
                result = self.predict(X_test[i])
                if result == y_test[i]:
                    right_count += 1
            return right_count / len(X_test)
    
    svm = SVM(max_iter=200,kernel='poly')
    svm.fit(X_train, y_train)
    svm.score(X_test, y_test)
    

    直接调用sklearn函数
    from sklearn.svm import SVC
    clf = SVC()
    clf.fit(X_train, y_train)
    clf.score(X_test, y_test)

    相关文章

      网友评论

          本文标题:7 支持向量机SMO算法(python代码)

          本文链接:https://www.haomeiwen.com/subject/ixjzlltx.html