Spring Boot集成Kafka
前提介绍
由于公司使用了微服务架构,很多业务拆成了很多小模块。
有个场景是这样的A服务主要负责写入或者修改数据库中的数据,B服务主要负责读取,B服务使用缓存技术,当A发生了修改后,需要通知B来清除缓存。
中间两个服务之间通知使用了Kafka,这个是本篇文章主要介绍的,关于 缓存技术 我也简单介绍过。
Kafka
简介
Kafka is a distributed,partitioned,replicated commit logservice。它提供了类似于JMS的特性,但是在实现上完全不同,此外它并不是JMS规范的实现。
kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例成为broker。
无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。
Topics & logs
一个Topic可以认为是一类消息,每个topic将被分成多个partition(区),每个partition在存储层面是append log文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。
imagekafka和JMS(Java Message Service)实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除.日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费.kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支.
对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费.事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值..(offset将会保存在zookeeper中,参见下文)
kafka集群几乎不需要维护任何consumer和producer状态信息,这些信息有zookeeper保存;因此producer和consumer的实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响.
partitions的目的有多个.最根本原因是kafka基于文件存储.通过分区,可以将日志内容分散到多个上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率.此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力.(具体原理参见下文).
Distribution
一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写操作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性.
基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个为"leader";leader负责所有的读写操作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可..由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定.
Producers
Producer将消息发布到指定的Topic中,同时Producer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等.
Consumers
本质上kafka只支持Topic.每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer.发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费.
如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡.
如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者.
在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息.kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的.事实上,从Topic角度来说,消息仍不是有序的.
kafka的原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息.
Guarantees
-
发送到partitions中的消息将会按照它接收的顺序追加到日志中
-
对于消费者而言,它们消费消息的顺序和日志中消息顺序一致.
-
如果Topic的"replicationfactor"为N,那么允许N-1个kafka实例失效.
Kafka安装与使用
安装
我使用的是Mac,下面介绍如何使用安装。
brew update
brew install kafka
结果
To have launchd start kafka now and restart at login:
brew services start kafka
Or, if you don't want/need a background service you can just run:
zookeeper-server-start /usr/local/etc/kafka/zookeeper.properties & kafka-server-start /usr/local/etc/kafka/server.properties
==> Summary
🍺 /usr/local/Cellar/kafka/0.11.0.1: 149 files, 35.5MB
结果显示,需要有2个配置文件
/usr/local/etc/kafka/server.properties
/usr/local/etc/kafka/zookeeper.properties
服务启动
这里为了简单,直接使用brew services start kafka
和brew services start zookeeper
来启动服务。
Topic
首先找到kafka安装目录,可以直接使用brew info kafka
,可以看出安装目录为/usr/local/Cellar/kafka/0.11.0.1
,然后cd到这个目录下面。
brew info kafka
kafka: stable 0.11.0.1 (bottled)
Publish-subscribe messaging rethought as a distributed commit log
https://kafka.apache.org/
/usr/local/Cellar/kafka/0.11.0.1 (156 files, 36.0MB) *
Poured from bottle on 2017-11-26 at 14:09:18
From: https://github.com/Homebrew/homebrew-core/blob/master/Formula/kafka.rb
==> Dependencies
Required: zookeeper ✔
==> Requirements
Required: java = 1.8 ✔
==> Caveats
To have launchd start kafka now and restart at login:
brew services start kafka
Or, if you don't want/need a background service you can just run:
zookeeper-server-start /usr/local/etc/kafka/zookeeper.properties & kafka-server-start /usr/local/etc/kafka/server.properties
创建一个abc123
的topic
/bin/kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic abc123
查看创建的topic
./bin/kafka-topics --list --zookeeper localhost:2181
kafka
消息发送与消费
Kafka提供了一个命令行客户端,它将从文件或标准输入接收输入,并将其作为消息发送到Kafka集群。默认情况下,每行都将作为单独的消息发送。
运行生产者,然后在控制台中键入一些消息发送到服务器。
./bin/kafka-console-producer --broker-list localhost:9092 --topic abc123
Kafka还有一个命令行消费者,将消息转储到标准输出。
./bin/kafka-console-consumer --bootstrap-server localhost:9092 --topic abc123 --from-beginning
kafka
如图,上面的是生产者,下面的是消费者,依次发送aaa,bbb,....ggg,消费者依次会收到对应的消息。
Spring Boot集成
开始
直接使用Idea创建一个Spring Boot项目即可,同时添加Lombok
和Kafka
库。
也可以接添加依赖库。
Gralde 依赖
dependencies {
compile('org.springframework.boot:spring-boot-starter')
compile('org.springframework.kafka:spring-kafka')
compile('org.projectlombok:lombok')
}
Maven 依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.1.1.RELEASE</version>
</dependency>
配置
配置application.properties
文件中kafka属性。
# kafka
spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=myGroup
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
代码
创建一个消息结构体
@Data
public class Message {
private Long id;
private String msg;
private Date sendTime;
}
一个消息发送者
@Component
public class KafkaSender {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
private Gson gson = new GsonBuilder().create();
public void send() {
Message message = new Message();
message.setId(System.currentTimeMillis());
message.setMsg(UUID.randomUUID().toString());
message.setSendTime(new Date());
kafkaTemplate.send("abc123", gson.toJson(message));
}
}
一个消息消费者
@Component
@Slf4j
public class KafkaReceiver {
@KafkaListener(topics = {"abc123"})
public void listen(ConsumerRecord<?, ?> record) {
Optional<?> kafkaMessage = Optional.ofNullable(record.value());
if (kafkaMessage.isPresent()) {
Object message = kafkaMessage.get();
log.info("record =" + record);
log.info("message =" + message);
}
}
}
在主程序中调用发送方法,模拟生产者
@SpringBootApplication
public class SpringKafkaDemoApplication {
public static void main(String[] args) {
ConfigurableApplicationContext context = SpringApplication.run(SpringKafkaDemoApplication.class, args);
KafkaSender sender = context.getBean(KafkaSender.class);
for (int i = 0; i < 3; i++) {
sender.send();
try {
Thread.sleep(3_000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
运行输出如下
record =ConsumerRecord(topic = abc123, partition = 0, offset = 17, CreateTime = 1511678827095, checksum = 2229762760, serialized key size = -1, serialized value size = 102, key = null, value = {"id":1511678826816,"msg":"2ff150e4-d7f9-4b4d-9604-b8d13a1d4538","sendTime":"Nov 26, 2017 2:47:06 PM"})
message ={"id":1511678826816,"msg":"2ff150e4-d7f9-4b4d-9604-b8d13a1d4538","sendTime":"Nov 26, 2017 2:47:06 PM"}
record =ConsumerRecord(topic = abc123, partition = 0, offset = 18, CreateTime = 1511678830109, checksum = 1589760372, serialized key size = -1, serialized value size = 102, key = null, value = {"id":1511678830108,"msg":"e1b93a1c-d88e-4b9b-8e1d-98e05edeb7c6","sendTime":"Nov 26, 2017 2:47:10 PM"})
message ={"id":1511678830108,"msg":"e1b93a1c-d88e-4b9b-8e1d-98e05edeb7c6","sendTime":"Nov 26, 2017 2:47:10 PM"}
record =ConsumerRecord(topic = abc123, partition = 0, offset = 19, CreateTime = 1511678833110, checksum = 4176540846, serialized key size = -1, serialized value size = 102, key = null, value = {"id":1511678833109,"msg":"f77fbb85-0eb9-402c-8265-c37987011551","sendTime":"Nov 26, 2017 2:47:13 PM"})
message ={"id":1511678833109,"msg":"f77fbb85-0eb9-402c-8265-c37987011551","sendTime":"Nov 26, 2017 2:47:13 PM"}
同时原先的命令行消费者也会受到程序发送的消息。
image总结
本人是刚刚入门的后端工程师,原先做过几年Java,说的比较简单,如有出错的地方,欢迎指正。
网友评论