KeyedStream → DataStream
一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是返回最后一次聚合的最终结果。
package com.atguigu.apiTest
import org.apache.flink.streaming.api.scala._
object TestReduce {
def main(args: Array[String]): Unit = {
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val stream2: DataStream[String] = env.readTextFile("C:\\Users\\Administrator\\Desktop\\0311Flink\\flink\\src\\main\\resources\\sensor")
//stream2.print()
val strem3: DataStream[SensorReading] = stream2.map(data => {
val dataArray: Array[String] = data.split(",")
SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
}).keyBy("id")
println("*******")
//strem3.print()
//输出当前传感器最新的温度+10,而时间戳是上一次数据的时间+1
val strem4: DataStream[SensorReading] = strem3.keyBy("id").reduce((x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature + 10))
//(x, y) => SensorReading() x表示已经聚合的结果,y表示新来的
strem4.print()
env.execute()
}
}
//传感器读数样例类
case class SensorReading(id:String, timestamp:Long, temperature: Double)
输出结果:
2> SensorReading(sensor_10,1547718206,10.1)
3> SensorReading(sensor_1,1547718200,11.1)
3> SensorReading(sensor_1,1547718201,45.8)
3> SensorReading(sensor_6,1547718201,15.4)
2> SensorReading(sensor_10,1547718207,48.1)
4> SensorReading(sensor_7,1547718202,6.7)
网友评论