美文网首页机器学习实战
【阿旭机器学习实战】【14】决策树回归模型实战:对美国波士顿房价

【阿旭机器学习实战】【14】决策树回归模型实战:对美国波士顿房价

作者: 阿旭123 | 来源:发表于2022-11-22 08:51 被阅读0次

    【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。

    本文用机器学习中的决策树回归模型对美国波士顿房价进行分析预测。

    关于决策树的详细介绍及原理参见前之前博文【阿旭机器学习实战】【12】决策树基本原理及其构造与使用方法.

    目录

    决策树回归模型:对美国波士顿房价进行分析

    导入数据

    boston = datasets.load_boston()
    boston
    
    {'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
             4.9800e+00],
            [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
             9.1400e+00],
            [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
             4.0300e+00],
            ...,
            [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
             5.6400e+00],
            [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
             6.4800e+00],
            [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
             7.8800e+00]]),
     'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,
            18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
            15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
            13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
            21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,
            35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
            19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
            20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
            23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
            33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
            21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,
            20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,
            23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
            15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
            17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
            25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
            23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,
            32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,
            34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,
            20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
            26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,
            31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,
            22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
            42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,
            36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
            32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,
            20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
            20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
            22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
            21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,
            19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,
            32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
            18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,
            16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,
            13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3,  8.8,
             7.2, 10.5,  7.4, 10.2, 11.5, 15.1, 23.2,  9.7, 13.8, 12.7, 13.1,
            12.5,  8.5,  5. ,  6.3,  5.6,  7.2, 12.1,  8.3,  8.5,  5. , 11.9,
            27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3,  7. ,  7.2,  7.5, 10.4,
             8.8,  8.4, 16.7, 14.2, 20.8, 13.4, 11.7,  8.3, 10.2, 10.9, 11. ,
             9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4,  9.6,  8.7,  8.4, 12.8,
            10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
            15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,
            19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
            29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
            20.6, 21.2, 19.1, 20.6, 15.2,  7. ,  8.1, 13.6, 20.1, 21.8, 24.5,
            23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),
     'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
            'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='<U7'),
     'DESCR': "Boston House Prices dataset\n===========================\n\nNotes\n------\nData Set Characteristics:  \n\n    :Number of Instances: 506 \n\n    :Number of Attributes: 13 numeric/categorical predictive\n    \n    :Median Value (attribute 14) is usually the target\n\n    :Attribute Information (in order):\n        - CRIM     per capita crime rate by town\n        - ZN       proportion of residential land zoned for lots over 25,000 sq.ft.\n        - INDUS    proportion of non-retail business acres per town\n        - CHAS     Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n        - NOX      nitric oxides concentration (parts per 10 million)\n        - RM       average number of rooms per dwelling\n        - AGE      proportion of owner-occupied units built prior to 1940\n        - DIS      weighted distances to five Boston employment centres\n        - RAD      index of accessibility to radial highways\n        - TAX      full-value property-tax rate per $10,000\n        - PTRATIO  pupil-teacher ratio by town\n        - B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town\n        - LSTAT    % lower status of the population\n        - MEDV     Median value of owner-occupied homes in $1000's\n\n    :Missing Attribute Values: None\n\n    :Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttp://archive.ics.uci.edu/ml/datasets/Housing\n\n\nThis dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 1978.   Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 1980.   N.B. Various transformations are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data has been used in many machine learning papers that address regression\nproblems.   \n     \n**References**\n\n   - Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n   - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n   - many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)\n"}
    
    data = boston.data
    target = boston.target
    
    data.shape
    
    (506, 13)
    
    x_train,x_test,y_train,y_test = train_test_split(data,target,test_size=0.25)
    

    建立模型

    # 导入决策树回归器
    from sklearn.tree import DecisionTreeRegressor
    dt = DecisionTreeRegressor()
    
    dt.fit(x_train,y_train)
    
    DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
               max_leaf_nodes=None, min_impurity_decrease=0.0,
               min_impurity_split=None, min_samples_leaf=1,
               min_samples_split=2, min_weight_fraction_leaf=0.0,
               presort=False, random_state=None, splitter='best')
    
    y_pre = dt.predict(x_test)
    
    y_pre[:10],y_test[:10]
    
    (array([32.7, 23.8,  8.7, 24.6, 48.3, 29.6, 29.9, 16.1, 22.7, 50. ]),
     array([33.3, 27.1, 13.4, 22.2, 46.7, 26.4, 28.2, 14.1, 23. , 38.7]))
    
    dt.score(x_test,y_test)
    
    0.7430965111047945
    

    回归问题的性能检测

    # 平均绝对误差,
    #记为MAE = [|y_pre[0]-avg_y| + |y_pre[1]-avg_y| +...+|y_pre[n-1]-avg_y|]/n,其中avg_y代表y的平均值
    from sklearn.metrics import mean_absolute_error
    mean_absolute_error(y_pre,y_test)
    
    3.089763779527559
    
    # 均方误差
    # 记为MSE = [(y1-avg_y)^2+...+(yn-avg_y)^2]
    from sklearn.metrics import mean_squared_error
    mean_squared_error(y_pre,y_test)
    
    20.925984251968504
    

    与线性回归做对比

    from sklearn.linear_model import LinearRegression
    
    lgr = LinearRegression()
    
    lgr.fit(x_train,y_train)
    
    LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
    
    y_ = lgr.predict(x_test)
    
    mean_absolute_error(y_,y_test)
    
    3.364403770795325
    
    mean_squared_error(y_,y_test)
    
    25.399771785084596
    
    lgr.score(x_test,y_test)
    
    0.6881728519834664
    

    如果内容对你有帮助,感谢点赞+关注哦!

    更多干货内容持续更新中…

    相关文章

      网友评论

        本文标题:【阿旭机器学习实战】【14】决策树回归模型实战:对美国波士顿房价

        本文链接:https://www.haomeiwen.com/subject/iysoxdtx.html