美文网首页TensorFlow
tensorflow非线性回归例子

tensorflow非线性回归例子

作者: 上行彩虹人 | 来源:发表于2018-09-16 16:11 被阅读25次

    1、例子一

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
    y_data = np.square(x_data)+ np.random.normal(0,0.02,x_data.shape)
    
    x = tf.placeholder(tf.float32,[None,1])
    y = tf.placeholder(tf.float32,[None,1])
    
    #输入层
    weight_l1 = tf.Variable(tf.random_normal([1,10]))
    bias_l1 = tf.Variable(tf.zeros([1,10]))
    y_l1 = tf.matmul(x,weight_l1) +bias_l1
    l1 = tf.nn.tanh(y_l1)
    #中间层
    weight_l2 = tf.Variable(tf.random_normal([10,1]))
    bias_l2 = tf.Variable(tf.zeros([1,1]))
    y_l2 = tf.matmul(l1,weight_l2) + bias_l2
    predect = tf.nn.tanh(y_l2)
    # predect = tf.nn.relu(y_l2)
    
    loss = tf.reduce_mean(tf.square(y-predect))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    init = tf.global_variables_initializer()
    
    
    with tf.Session() as sess:
        sess.run(init)
        for _ in range(10000):
            sess.run(train_step,feed_dict={x:x_data,y:y_data})
            # print(sess.run(loss,feed_dict={x:x_data,y:y_data}))
    
        pre = sess.run(predect,feed_dict={x:x_data})
        plt.figure()
        plt.scatter(x_data,y_data)
        plt.plot(x_data,pre,'r-',lw=5)
        plt.show()
    

    显示结果


    image.png

    2、例子2
    当把x_data扩展到【-1,1】是效果并不理想
    考虑真假一层神经网路,并且把靠近输入的地方的激活函数改为relu
    同属增加x_data数据

    x_data = np.linspace(-1,1,2000)[:,np.newaxis]
    
    noise = np.random.normal(0,0.02,x_data.shape)
    y_data = np.square(x_data) + noise
    
    x = tf.placeholder(tf.float32,[None,1])
    y = tf.placeholder(tf.float32,[None,1])
    
    weight_1 = tf.Variable(tf.random_normal([1,10]))
    bias_1 = tf.Variable(tf.zeros([1,10]))
    layer_1 = tf.matmul(x,weight_1) + bias_1
    layer_1_out = tf.nn.relu(layer_1)
    
    weight_2 = tf.Variable(tf.random_normal([10,5]))
    bias_2 = tf.Variable(tf.zeros([1,5]))
    layer_2 = tf.matmul(layer_1_out,weight_2) + bias_2
    layer_2_out = tf.nn.relu(layer_2)
    
    weight_3 = tf.Variable(tf.random_normal([5,1]))
    bias_3 = tf.Variable(tf.zeros([1,1]))
    layer_3 = tf.matmul(layer_2_out,weight_3)+bias_3
    prediction = tf.nn.tanh(layer_3)
    
    
    
    
    loss = tf.reduce_mean(tf.square(prediction-y))
    optimizer = tf.train.GradientDescentOptimizer(1)
    train_step = optimizer.minimize(loss)
    
    with tf.Session(config=config) as sess:
        sess.run(tf.global_variables_initializer())
        for step in range(20000):
            sess.run(train_step,feed_dict={x:x_data,y:y_data})
            if step%100==0:
                print(sess.run(loss,feed_dict={x:x_data,y:y_data}))
    
        prediction_value = sess.run(prediction,feed_dict={x:x_data})
        plt.figure()
        plt.scatter(x_data,y_data)
        plt.plot(x_data,prediction_value,color='red')
        plt.show()
    
    image.png

    相关文章

      网友评论

        本文标题:tensorflow非线性回归例子

        本文链接:https://www.haomeiwen.com/subject/izhfnftx.html