函数与方程思想在高考中也是必考内容,特别是在函数、解析几何、三角函数等处都可能考到,几乎大多数年份高考中大题都会涉及到.因此认真体会函数与方程思想是成功高考的关键。
考点1 函数思想
一般地,函数思想就是构造函数从而利用函数的图象与性质解题,经常利用的性质是:单调性、奇偶性、周期性、最大值和最小值、图象变换等.在解题中,善于挖掘题目的隐含条件,构造出函数解析式和巧用函数的性质,是应用函数思想的关键,它广泛地应用于方程、不等式、数列等问题.
考点2 方程思想
1.方程思想就是将所求的量(或与所求的量相关的量)设成未知数,用它表示问题中的其他各量,根据题中的已知条件列出方程(组),通过解方程(组)或对方程(组)进行研究,使问题得到解决.
2.方程思想与函数思想密切相关:方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标;函数y=f(x)也可以看作二元方程f(x)-y=0,通过方程进行研究,方程f(x)=a有解,当且仅当a属于函数f(x)的值域.函数与方程的这种相互转化关系十分重要.
考点3 函数与方程思想在解题中的应用
可用函数与方程思想解决的相关问题
1.函数思想在解题中的应用主要表现在两个方面:
(1)借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;
(2)在研究问题中通过建立函数关系式或构造中间函数,把研究的问题化为讨论函数的有关性质,达到化难为易、化繁为简的目的.
2.方程思想在解题中的应用主要表现在四个方面:
(1)解方程或解不等式
(2)带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识的应用;
(3)需要转化为方程的讨论,如曲线的位置关系等;
(4)构造方程或不等式求解问题.
网友评论