美文网首页
kmeans聚类算法手动实现

kmeans聚类算法手动实现

作者: writ | 来源:发表于2019-08-26 14:49 被阅读0次

    sklearn实现kmeans

    import numpy as np
    import sklearn.cluster as sc
    import matplotlib.pyplot as mp
    x=np.loadtxt('multiple3.txt',delimiter=',')
    model = sc.KMeans(n_clusters=6)
    model.fit(x)
    centers=model.cluster_centers_
    n=500
    l,r=x[:,0].min()-1,x[:,0].max()+1
    b,t=x[:,1].min()-1,x[:,1].max()+1
    grid_x=np.meshgrid(np.linspace(l,r,n),np.linspace(b,t,n))
    flat_x=np.column_stack((grid_x[0].ravel(),grid_x[1].ravel()))
    flat_y=model.predict(flat_x)
    grid_y=flat_y.reshape(grid_x[0].shape)
    pred_y=model.predict(x)
    mp.figure('kmeans',facecolor='lightgray')
    mp.title('Kmeans',fontsize=20)
    mp.xlabel('x',fontsize=20)
    mp.ylabel('y',fontsize=20)
    mp.tick_params(labelsize=10)
    mp.pcolormesh(grid_x[0],grid_x[1],grid_y,cmap='gray')
    mp.scatter(x[:,0],x[:,1],c=pred_y,cmap='brg',s=80)
    mp.scatter(centers[:,0],centers[:,1],marker='+',c='gold',s=1000,linewidth=1)
    mp.show()
    

    kmeans手动实现

    import numpy as np
    import matplotlib.pyplot as plt
     
    # 加载数据
    def loadDataSet(fileName):
        data = np.loadtxt(fileName,delimiter=',')
        return data
     
    # 欧氏距离计算
    def distEclud(x,y):
        return np.sqrt(np.sum((x-y)**2))  # 计算欧氏距离
     
    # 为给定数据集构建一个包含K个随机质心的集合
    def randCent(dataSet,k):
        m,n = dataSet.shape
        centroids = np.zeros((k,n))
        for i in range(k):
            index = int(np.random.uniform(0,m)) #
            centroids[i,:] = dataSet[index,:]
        return centroids
     
    # k均值聚类
    def KMeans(dataSet,k):
     
        m = np.shape(dataSet)[0]  #行的数目
        # 第一列存样本属于哪一簇
        # 第二列存样本的到簇的中心点的误差
        clusterAssment = np.mat(np.zeros((m,2)))
        clusterChange = True
     
        # 第1步 初始化centroids
        centroids = randCent(dataSet,k)
        while clusterChange:
            clusterChange = False
     
            # 遍历所有的样本(行数)
            for i in range(m):
                minDist = 100000.0
                minIndex = -1
     
                # 遍历所有的质心
                #第2步 找出最近的质心
                for j in range(k):
                    # 计算该样本到质心的欧式距离
                    distance = distEclud(centroids[j,:],dataSet[i,:])
                    if distance < minDist:
                        minDist = distance
                        minIndex = j
                # 第 3 步:更新每一行样本所属的簇
                if clusterAssment[i,0] != minIndex:
                    clusterChange = True
                    clusterAssment[i,:] = minIndex,minDist**2
            #第 4 步:更新质心
            for j in range(k):
                pointsInCluster = dataSet[np.nonzero(clusterAssment[:,0].A == j)[0]]  # 获取簇类所有的点
                centroids[j,:] = np.mean(pointsInCluster,axis=0)   # 对矩阵的行求均值
     
        print("Congratulations,cluster complete!")
        return centroids,clusterAssment
     
    def showCluster(dataSet,k,centroids,clusterAssment):
        m,n = dataSet.shape
        if n != 2:
            print("数据不是二维的")
            return 1
     
        mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
        if k > len(mark):
            print("k值太大了")
            return 1
     
        # 绘制所有的样本
        for i in range(m):
            markIndex = int(clusterAssment[i,0])
            plt.plot(dataSet[i,0],dataSet[i,1],mark[markIndex])
     
        mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
        # 绘制质心
        for i in range(k):
            plt.plot(centroids[i,0],centroids[i,1],mark[i])
     
        plt.show()
    dataSet = loadDataSet("multiple3.txt")
    k = 4
    centroids,clusterAssment = KMeans(dataSet,k)
     
    showCluster(dataSet,k,centroids,clusterAssment)
    

    相关文章

      网友评论

          本文标题:kmeans聚类算法手动实现

          本文链接:https://www.haomeiwen.com/subject/jaqtectx.html