数据说明:’./data/raw/pm25.csv’文件为某地2017年一段时间内的PM2.5的每小时监测数据,数据按时间顺序记录(从2017-01-01 00:00:00开始,中间不间断),由于各种原因造成了某些时刻的数据缺失。
要求:
1.利用已有的记录数据进行建模,将缺失值填充完整,评估指标采用RMSE、MAE和;
2.尝试多种方法进行建模,对比各种模型的性能;
3.希望你不要直接用中值、均值、前一时刻、后一时刻等常数填充法进行填充(方法对比中可用做简单对比,如表 2所示);
4.将数据填充完整后保存至’pm25_predicted.csv’文件(只保存缺失时刻的数据,不按要求则作废),数据格式如表 3所示(列名、文件名不按要求则作废)。
题解:
(1)完成时间序列缺失数据填充,一般来说有如下几种方式:常数填充有均值填充,中位数填充,众数填充,前一时刻和后一时刻填充,传统回归模型方式有自回归模型,移动平均模型,自回归移动平均模型和差分自回归移动平均模型,一般采用插值法填充数据,插值办法一般有滑动平均插值,线性插值,拉格朗日多项式插值;
(2)每个函数对应一种办法,先将数据用pandas从csv文件中读取为df,然后进行数据插值的算法操作,最后将插值后的数据集用matplotlib呈现出来,最后将插值的数据转化为df,用pandas重新写回csv之中;
代码:
1.time_series_fill.py
# -*- coding:utf-8 -*-
from pandas.compat import reduce
__author__ = 'gin.chen'
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import lagrange
# from fbprophet import Prophet
#
# 加载数据
def load_data():
df = pd.read_csv('F:/muke/super_mali/data/raw/pm25.csv')
# return df.head(100)
return df
# 画散点图
def draw_scatte_diagram(df):
plt.plot(df['index'].to_list(), df['PM2.5'].to_list())
plt.show()
# 均值填充
def mean_method():
df = load_data()
df.fillna(df['PM2.5'].mean(), inplace=True)
draw_scatte_diagram(df)
# 中位数填充
def median_method():
df = load_data()
df.fillna(df['PM2.5'].median(), inplace=True)
draw_scatte_diagram(df)
# 众数填充
def mode_method():
df = load_data()
df.fillna(df['PM2.5'].mode(), inplace=True)
draw_scatte_diagram(df)
# 前一时刻填充
def ffill_method():
df = load_data()
df['PM2.5'].fillna(method='ffill', inplace=True)
draw_scatte_diagram(df)
# 后一时刻填充
def bfill_method():
df = load_data()
df['PM2.5'].fillna(method='bfill', inplace=True)
draw_scatte_diagram(df)
# 前后时刻平均值插值
def mean_by_before_after_method():
df = load_data()
# data_index = df['index'].to_list()
# data_value = df['PM2.5'].to_list()
fill = []
for i in range(len(df)):
if np.math.isnan(df.iloc[i - 1][1]):
left = df.iloc[i - 2][1]
for j in range(i, len(df)):
if np.math.isnan(df.iloc[j][1]):
continue
else:
right = df.iloc[j][1]
break
df.iloc[i - 1, 1] = (left + right) / 2
fill_tuple = i, df.iloc[i - 1][1]
fill.append(fill_tuple)
draw_scatte_diagram(df)
df = pd.DataFrame(fill, columns=['index', 'PM2.5'])
df.to_csv('pm25_predicted_mean.csv', index=False)
# 线性插值详细
def linear_detail(x1, y1, x2, y2):
k = (y2 - y1) / (x2 - x1)
b = y1 - k * x1
return lambda x: b + k * x
# 线性插值
def linear_method():
# global j
df = load_data()
fill = []
for i in range(len(df)):
if np.isnan(df.iloc[i][1]):
for j in range(i, len(df)):
if np.isnan(df.iloc[j][1]):
continue
else:
break
df.iloc[i, 1] = (linear_detail(i, df.iloc[i - 1][1], j + 1, df.iloc[j][1]))(i + 1)
fill_tuple = i + 1, df.iloc[i][1]
fill.append(fill_tuple)
draw_scatte_diagram(df)
df = pd.DataFrame(fill, columns=['index', 'PM2.5'])
df.to_csv('pm25_predicted_linear.csv', index=False)
# 平滑插值详细
def smooth_detail(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()]
return reduce(lambda a, b: a + b, y) / len(y)
# 平滑插值
def smooth_method(show=1):
df_raw = load_data()
df = df_raw['PM2.5'].copy()
full = []
for j in range(len(df)):
if (df.isnull())[j]: # 如果为空即插值。
df[j] = smooth_detail(df, j)
df_raw.loc[j, 'PM2.5'] = df[j]
# print(j, df_raw.loc[j, 'index'], df_raw.loc[j, 'PM2.5'])
full_tuple = df_raw.loc[j, 'index'], df_raw.loc[j, 'PM2.5']
full.append(full_tuple)
if show:
draw_scatte_diagram(df_raw)
df = pd.DataFrame(full, columns=['index', 'PM2.5'])
df.to_csv('pm25_predicted_smooth.csv', index=False)
return df_raw
# 拉格朗日插值详细
def lagrange_detail(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()] # 剔除空值
return lagrange(y.index, list(y))(pos) # 插值并返回插值结果
# 拉格朗日插值
def lagrange_method():
df_raw = load_data()
df = df_raw['PM2.5'].copy()
full = []
for j in range(len(df)):
if (df.isnull())[j]: # 如果为空即插值。
df[j] = lagrange_detail(df, j)
df_raw.loc[j, 'PM2.5'] = df[j]
# print(j, df.loc[j, 'index'], df[j])
full_tuple = df_raw.loc[j, 'index'], df_raw.loc[j, 'PM2.5']
full.append(full_tuple)
draw_scatte_diagram(df_raw)
df = pd.DataFrame(full, columns=['index', 'PM2.5'])
df.to_csv('pm25_predicted_lagrange.csv', index=False)
# 计算RMSE
def calculate_RMSE(target, prediction):
error = []
for i in range(len(target)):
error.append(target[i] - prediction[i])
return (sum([n * n for n in error]) / len(error)) ** 0.5
# 计算MAE
def calculate_MAE(target, prediction):
error = []
for i in range(len(target)):
error.append(target[i] - prediction[i])
return sum([abs(n) for n in error]) / len(error)
# 计算R-square
def calculate_R_Square(target, prediction):
error = []
a = calculate_MAE(target, prediction) * len(error)
mean = np.mean(np.array(target))
for i in range(len(target)):
error.append(prediction[i] - mean)
b = sum([n * n for n in error])
return 1 - a / b
if __name__ == '__main__':
# mean_method()
# median_method()
# mode_method()
# ffill_method()
# bfill_method()
# mean_by_before_after_method()
# linear_method()
# lagrange_method()
smooth_method()
2.fbprophet_fill.py
# -*- coding:utf-8 -*-
from pandas.io.sas.sas7bdat import _column
from time_series_fill import smooth_method
__author__ = 'gin.chen'
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
from fbprophet import Prophet
if __name__ == '__main__':
def load_data():
# df = pd.read_csv('F:/muke/super_mali/data/raw/pm25.csv')
# return df.head(100)
df = smooth_method(0)
return df.head(3129)
df = load_data()
first_value = datetime.datetime.strptime('2017-01-01 00:00:00', '%Y-%m-%d %H:%M:%S')
for i in range(len(df)):
df.iloc[i, 0] = (first_value + datetime.timedelta(hours=i)).strftime("%Y-%m-%d %H:%M:%S")
# df = pd.DataFrame(, columns=['ds', 'y'])
# df.to_csv('pm25_predicted_mean.csv', index=False)
# print(df.iloc[1,0])
df.rename(columns={'index': 'ds', 'PM2.5': 'y'}, inplace=True)
m = Prophet()
# df['y'] = np.log(df['y'])
df = m.fit(df)
future = m.make_future_dataframe(freq='H', periods=5428)
future.tail()
forecast = m.predict(future)
forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()
fig1 = m.plot(forecast)
fig2 = m.plot_components(forecast)
plt.show()
运行结果图:
Mean Median Ffill_method Bfill_method Linear_method lagrange_method smooth_method Fbprophet实现 日,周,月的趋势未完待续。。。
网友评论