学习笔记19:图像定位 - pbc的成长之路 - 博客园 (cnblogs.com)
数据集:Oxford-IIIT_Pets-OpenDataLab
image.png
image.png
image.png
image.png
image.png
image.png
image.png
image.png
数据集分析
图片路径\dataset\images
标签单独放在一个路径下面dataset/annotations/xmls/
image.png
boundbox:锚框,标注猫狗头部所在位置
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import data
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import torchvision
from torchvision import transforms
import os # 文件夹读取
from lxml import etree # 解析页面
from matplotlib.patches import Rectangle # 绘制正方形,锚框
import glob # 获取所有路径
from PIL import Image # 读取图像
BATCH_SIZE = 16
pil_img = Image.open(r'data/Oxford-IIIT Pets Dataset\dataset\images\Abyssinian_1.jpg') # 取出第1张图片
# np_img = np.array(pil_img) # 绘图前,需要将图片格式转换为numpy的ndarray格式
# np_img.shape # (400, 600, 3)
# plt.imshow(np_img)
# plt.show()
xml = open(r'data/Oxford-IIIT Pets Dataset/dataset/annotations/xmls/Abyssinian_1.xml').read() # 取出标注信息
sel = etree.HTML(xml) # etree解析网络源文件
width = sel.xpath('//size/width/text()')[0] # 根目录 //,后面的路径size/width,取出width标签里面的文本 text(),600
height = sel.xpath('//size/height/text()')[0] # 获取高度,# 400
xmin = sel.xpath('//bndbox/xmin/text()')[0]
ymin = sel.xpath('//bndbox/ymin/text()')[0]
xmax = sel.xpath('//bndbox/xmax/text()')[0]
ymax = sel.xpath('//bndbox/ymax/text()')[0]
width = int(width)
height = int(height)
xmin = int(xmin)
ymin = int(ymin)
xmax = int(xmax)
ymax = int(ymax)
# plt.imshow(np_img)
# # Rectangle() 左下角,宽度,高度。 jupyter notebook用shift + Tab快捷键来显示帮助信息。
# rect = Rectangle((xmin, ymin), (xmax-xmin), (ymax-ymin), fill=False, color='red')
# ax = plt.gca() # get current axis 获取当前坐标系
# ax.axes.add_patch(rect) # 在当前坐标系上添加矩形框
# plt.show()
img = pil_img.resize((224, 224))
xmin = xmin/width*224 # 将新的左边点转换为相对于width/height的比值,这样无论resize到什么样的大小,都可以将图绘制出来
ymin = ymin/height*224 # 无论原图被resize到多少,ymin/height 和 xmin/width 这个比值都是不变的。
xmax = xmax/width*224 # 使用比值作为目标值,无论resize成多少,图像都可以绘制出来。
ymax = ymax/height*224
# plt.imshow(img)
# rect = Rectangle((xmin, ymin), (xmax-xmin), (ymax-ymin), fill=False, color='red')
# ax = plt.gca()
# ax.axes.add_patch(rect)
# plt.show()
# 创建输入
images = glob.glob(r'data/Oxford-IIIT Pets Dataset\dataset\images\*.jpg')
# images[:5]
# ['dataset/images\\Abyssinian_1.jpg',
# 'dataset/images\\Abyssinian_10.jpg',
# 'dataset/images\\Abyssinian_100.jpg',
# 'dataset/images\\Abyssinian_101.jpg',
# 'dataset/images\\Abyssinian_102.jpg']
# len(images) #7390
xmls = glob.glob(r'data/Oxford-IIIT Pets Dataset/dataset/annotations/xmls/*.xml')
# xmls[:5]
# ['dataset/annotations/xmls\\Abyssinian_1.xml',
# 'dataset/annotations/xmls\\Abyssinian_10.xml',
# 'dataset/annotations/xmls\\Abyssinian_100.xml',
# 'dataset/annotations/xmls\\Abyssinian_101.xml',
# 'dataset/annotations/xmls\\Abyssinian_102.xml']
# len(xmls) # 3686, 说明并没有对所有的图片进行标注。
# 需要取出这些文件的名称,只有图片名称与标注文件名称一致的内容 取出来,进行训练/推理
xmls_names = [x.split('\\')[-1].split('.xml')[0] for x in xmls]
imgs = [img for img in images if
img.split('\\')[-1].split('.jpg')[0] in xmls_names] # 将图片名称在xmls_name中则接纳,否则抛弃。
# len(imgs) #3686
# 此时imgs与xmls_name 是一一对应的。
# 将xml文件转换为标签的格式。
scal = 224
def to_labels(path):
xml = open(r'{}'.format(path)).read() # 打开并读取路径。r防止转义
sel = etree.HTML(xml) # 解析xml
width = int(sel.xpath('//size/width/text()')[0]) # 获取图片宽度
height = int(sel.xpath('//size/height/text()')[0])
xmin = int(sel.xpath('//bndbox/xmin/text()')[0])
ymin = int(sel.xpath('//bndbox/ymin/text()')[0])
xmax = int(sel.xpath('//bndbox/xmax/text()')[0])
ymax = int(sel.xpath('//bndbox/ymax/text()')[0])
return [xmin/width, ymin/height, xmax/width, ymax/height] # 获取各指标所在位置,最小比例值
labels = [to_labels(path) for path in xmls]
out1_label, out2_label, out3_label, out4_label = list(zip(*labels))
# len(out1_label), len(out2_label), len(out3_label), len(out4_label) # (3686, 3686, 3686, 3686)
index = np.random.permutation(len(imgs)) # 先对所有图片创建与图片长度相同的乱序的序号
images = np.array(imgs)[index]
labels = np.array(labels)[index]
# labels.shape #(3686, 4)
labels = labels.astype(np.float32)
# 切分训练集与测试集
i = int(len(imgs)*0.8)
train_images = images[:i]
train_labels = labels[:i]
test_images = images[i: ]
test_labels = labels[i:]
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
])
class Oxford_dataset(data.Dataset):
def __init__(self, img_paths, labels_list):
self.imgs = img_paths
self.labels = labels_list
def __getitem__(self, index):
img = self.imgs[index]
pil_img = Image.open(img)
img_tensor = transform(pil_img)
label_1,label_2,label_3,lable_4 = self.labels[index]
return img_tensor,label_1,label_2,label_3,lable_4
def __len__(self):
return len(self.imgs)
train_dataset = Oxford_dataset(train_images, train_labels)
test_dataset = Oxford_dataset(test_images, test_labels)
train_dl = data.DataLoader(train_dataset,batch_size=BATCH_SIZE,shuffle=True)
test_dl = data.DataLoader(test_dataset,batch_size=BATCH_SIZE)
imgs_batch,out1_batch,out2_batch,out3_batch,out4_batch = next(iter(train_dl))
# imgs_batch.shape, out1_batch.shape # (torch.Size([16, 3, 224, 224]), torch.Size([16]))
# 图像可视化
# plt.figure(figsize=(12, 8))
# for i,(img, label1, label2,
# label3,label4,) in enumerate(zip(imgs_batch[:2], # zip 同时进行迭代。 :2 表示对前2张图片迭代
# out1_batch[:2],
# out2_batch[:2],
# out3_batch[:2],
# out4_batch[:2])):
# img = (img.permute(1,2,0).numpy() + 1)/2 # permute 将batch扔到最后
# plt.subplot(2, 3, i+1) # 2行3列第i+1个位置。i从0开始,但图片位置是从1开始
# plt.imshow(img)
# xmin, ymin, xmax, ymax = label1*224, label2*224, label3*224, label4*224, # 现在返回的label1/label2/label3/label4为图像的相对位置,需要乘以224 由相对位置变为实际位置
# rect = Rectangle((xmin, ymin), (xmax-xmin), (ymax-ymin), fill=False, color='red')
# ax = plt.gca()
# ax.axes.add_patch(rect)
# 创建定位模型
resnet = torchvision.models.resnet101(pretrained=True)
in_f = resnet.fc.in_features # in_f与卷积部分的输出一样大,
# print(in_f) # 2048
# len(list(resnet.children())) # resnet模型通过resnet.children() 打印子层,层数为10
# list(resnet.children())[-1] # Linear(in_features=2048, out_features=1000, bias=True) 最后一层为linear层
# 现在需要把除去linear层以外的所有层提起出来,用于提取特征 list(resnet.children())[:-1]
# 需要用nn.Sequential来创建卷积基,
class Net(nn.Module):
def __init__(self): # 初始化部分,初始化了一个resnet卷积基,4个全连接层用于分别输出4个不同的坐标值(相对位置)
super(Net, self).__init__()
self.conv_base = nn.Sequential(*list(resnet.children())[:-1]) # 用* 进行解包,这样就可以得到卷积基。提取除了最后一层以外的所有层
# self.conv_base = nn.Sequential(*list(resnet.children())[:5]) # 提取卷积基的前5层
self.fc1 = nn.Linear(in_f, 1) # 输出1个标量值
self.fc2 = nn.Linear(in_f, 1)
self.fc3 = nn.Linear(in_f, 1)
self.fc4 = nn.Linear(in_f, 1)
def forward(self, x):
x = self.conv_base(x) # 卷积基上面调用
x = x.view(x.size(0), -1)
x1 = self.fc1(x)
x2 = self.fc2(x)
x3 = self.fc3(x)
x4 = self.fc4(x)
return x1, x2, x3, x4
model = Net()
if torch.cuda.is_available():
model.to('cuda')
loss_fn = nn.MSELoss() # 图形定位 本质上是一个回归问题,输出准确的位置,因此用MESLoss
from torch.optim import lr_scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
def fit(epoch, model, trainloader, testloader):
total = 0
running_loss = 0
model.train()
for x, y1, y2, y3, y4 in trainloader:
if torch.cuda.is_available():
x, y1, y2, y3, y4 = (x.to('cuda'),
y1.to('cuda'), y2.to('cuda'),
y3.to('cuda'), y4.to('cuda'))
y_pred1, y_pred2, y_pred3, y_pred4 = model(x)
loss1 = loss_fn(y_pred1, y1)
loss2 = loss_fn(y_pred2, y2)
loss3 = loss_fn(y_pred3, y3)
loss4 = loss_fn(y_pred4, y4)
loss = loss1 + loss2 + loss3 + loss4
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
running_loss += loss.item()
exp_lr_scheduler.step()
epoch_loss = running_loss / len(trainloader.dataset)
test_total = 0
test_running_loss = 0
model.eval()
with torch.no_grad():
for x, y1, y2, y3, y4 in testloader:
if torch.cuda.is_available():
x, y1, y2, y3, y4 = (x.to('cuda'),
y1.to('cuda'), y2.to('cuda'),
y3.to('cuda'), y4.to('cuda'))
y_pred1, y_pred2, y_pred3, y_pred4 = model(x)
loss1 = loss_fn(y_pred1, y1)
loss2 = loss_fn(y_pred2, y2)
loss3 = loss_fn(y_pred3, y3)
loss4 = loss_fn(y_pred4, y4)
loss = loss1 + loss2 + loss3 + loss4
test_running_loss += loss.item()
epoch_test_loss = test_running_loss / len(testloader.dataset)
print('epoch: ', epoch,
'loss: ', round(epoch_loss, 3),
'test_loss: ', round(epoch_test_loss, 3),
)
return epoch_loss, epoch_test_loss
epochs = 10
train_loss = []
test_loss = []
for epoch in range(epochs):
epoch_loss, epoch_test_loss = fit(epoch, model, train_dl, test_dl)
train_loss.append(epoch_loss)
test_loss.append(epoch_test_loss)
# plt.figure()
# plt.plot(range(1, len(train_loss)+1), train_loss, 'r', label='Training loss')
# plt.plot(range(1, len(train_loss)+1), test_loss, 'bo', label='Validation loss')
# plt.title('Training and Validation Loss')
# plt.xlabel('Epoch')
# plt.ylabel('Loss Value')
# plt.legend()
# plt.show()
# 模型保存
PATH = 'location_model.pth'
torch.save(model.state_dict(), PATH)
# plt.figure(figsize=(8, 24))
# imgs, _, _, _, _ = next(iter(test_dl)) # 只取出图片
# if torch.cuda.is_available():
# imgs = imgs.to('cuda')
# out1, out2, out3, out4 = model(imgs) # 对图片进行预测
# for i in range(6):
# plt.subplot(6, 1, i+1)
# plt.imshow(imgs[i].permute(1,2,0).cpu().numpy())
# xmin, ymin, xmax, ymax = (out1[i].item()*224,
# out2[i].item()*224,
# out3[i].item()*224,
# out4[i].item()*224)
# rect = Rectangle((xmin, ymin), (xmax-xmin), (ymax-ymin), fill=False, color='red') # 绘制矩形框
# ax = plt.gca()
# ax.axes.add_patch(rect)
网友评论