(一)代码实现 单发多框检测(SSD)
(1)多尺度锚框
可以先看看上一篇对目标检测算法的介绍,可能会有帮助。
【目标检测算法】https://www.jianshu.com/p/75c9ee311d8c
【锚框】https://www.jianshu.com/p/f196adddf142
其实说实话,我们对这个代码不需要完全明白,因为首先SSD是比较落后的算法了,其次没有人会真的手敲一遍,这难度太大,一般是了解其过程,看得懂代码,然后当一个调包侠。
当然如果你能知道每一个矩阵变化,脑海里有完美的网络结构的话。你是一个大佬,这是很好的。
![](https://img.haomeiwen.com/i12824314/922a7158d121de61.png)
%matplotlib inline
import torch
from d2l import torch as d2l
img = d2l.plt.imread("../img/catdog.jpg")
h,w = img.shape[:2]
# 在特征图上(fmp)上生成锚框(anchors),每个单位(像素)作为锚框的中心。
def display_anchors(fmap_w, fmap_h, s):
d2l.set_figsize()
fmap = torch.zeros((1,10,fmap_w,fmap_h))
anchors = d2l.multibox_prior(fmap,sizes=s,ratios=[1,0.5,2])
bbox_scale = torch.tensor((w,h,w,h))
d2l.show_bboxes(d2l.plt.imshow(img).axes,anchors[0]*bbox_scale)
这里我一开始是有疑惑的,为什么和之前的不一样,
不是要对每一个像素规划锚框吗?为什么这里选择了使用(4,4)的feature map
实际上这应该是在多尺度特征块上提取出来的feature map上做锚框,按比例映射到原图上。他并不会在原始图片上画锚框。
display_anchors(4,4,[0.15])
![](https://img.haomeiwen.com/i12824314/14db22d72e1e8534.png)
所以在下一个多尺度块的时候,特征提取会将feature map再次宽高减半,所以我们来看看这时候的锚框
这便是上一篇说的浅层检测小的物体,高层可以检测较大的物体。
display_anchors(2,2,s=[0.4])
![](https://img.haomeiwen.com/i12824314/bf00d12cc21b911c.png)
到最后一层,只剩一个特征值的时候的锚框长什么样呢?
display_anchors(1,1,s=[0.8])
![](https://img.haomeiwen.com/i12824314/6c405f029a1fe04e.png)
(2)从零SSD实现
%matplotlib inline
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
# 预测一个锚框的类别
# 输入是一个feature map
# 经过这个卷积层,高宽不变,唯一变化的是通道数
# 输出通道等于锚框数量*(所有类别+1),1为背景类
# 输出通道的意思是,每一个通道是某个锚框在某一类上的预测值
def cls_predictor(num_inputs, num_anchors, num_classes):
return nn.Conv2d(in_channels=num_inputs,out_channels=num_anchors*(num_classes+1),kernel_size=3,padding=1)
# 预测锚框的偏移量
# 每一个锚框的偏移量是四个值
# 所以锚框数量*4是所有锚框的所有偏移量的数量
# 输出通道表示的是,每一个通道是某个锚框的一个偏移量的值
def bbox_predictor(num_inputs,num_anchors):
return nn.Conv2d(num_inputs,num_anchors*4,kernel_size=3,padding=1)
# 连接多尺度的预测
def forward(x, block):
return block(x)
Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape #(torch.Size([2, 55, 20, 20]), torch.Size([2, 33, 10, 10]))
可以看到上述的输出都是会发生变化的,因为feature map的宽高会发生变化,锚框的个数也会发生变化。我们要想办法把这些预测值弄到一起。
def flatten_pred(pred):
# 这里的操作是,把通道数放到最后,然后从第一维开始拉直,并且batchsize不会变
# 为什么要把通道数放到最后一维呢?
# 是因为他要保证一个像素的预测值是连续的
return torch.flatten(pred.permute(0,2,3,1),start_dim=1)
def concat_preds(preds):
# 按照维度为1的轴拼接,就是在行的后面直接接上后面的那个预测值
# 要求批量数一样,
return torch.cat([flatten_pred(p) for p in preds],dim=1)
concat_preds([Y1,Y2]).shape
# 我们定义一个简单的网络块,用于高宽减半
def down_sample_blk(in_channels, out_channels):
blk = []
for _ in range (2):
blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3,padding=1))
blk.append(nn.BatchNorm2d(out_channels))
blk.append(nn.ReLU())
in_channels = out_channels
blk.append(nn.MaxPool2d(2))
return nn.Sequential(*blk)
forward(torch.zeros((2,3,20,20)),down_sample_blk(3,10)).shape
# 基本网络块,也就是第一个网络块
def base_net():
blk = []
num_filters = [3,16,32,64]
for i in range(len(num_filters)-1):
blk.append(down_sample_blk(num_filters[i],num_filters[i+1]))
return nn.Sequential(*blk)
forward(torch.zeros((2,3,256,256)),base_net()).shape
def get_blk(i):
if i == 0:
blk = base_net()
elif i == 1:
blk = down_sample_blk(64,128)
elif i == 4:
blk = nn.AdaptiveMaxPool2d((1,1))
else:
blk = down_sample_blk(128,128)
return blk
def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
Y = blk(X)
anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
cls_preds = cls_predictor(Y) # 这是卷积层
bbox_preds = bbox_predictor(Y) # 这是卷积层
return (Y, anchors, cls_preds, bbox_preds)
sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],[0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1
关于setattr的用法和作用:给对象设置属性并赋值。
Sets the named attribute on the given object to the specified value.
setattr(x, 'y', v) is equivalent to x.y = v''
class TinySSD(nn.Module):
def __init__(self, num_classes, num_anchors,sizes,ratios, **kwargs) -> None:
# 等同super().__init__(**kwargs)
super(TinySSD, self).__init__(**kwargs)
self.num_classes = num_classes
idx_to_in_channels = [64,128,128,128,128]
self.size = sizes
self.ratio = ratios
for i in range(5):
# 整个模型分为5个stage
setattr(self,f"blk{i}",get_blk(i))
setattr(self,f"cls{i}",cls_predictor(idx_to_in_channels[i],num_anchors,num_classes))
setattr(self,f"bbox{i}",bbox_predictor(idx_to_in_channels[i],num_anchors))
def forward(self,x):
anchors,cls_preds,bbox_preds = [None]*5,[None]*5,[None]*5
for i in range(5):
x,anchors[i],cls_preds[i],bbox_preds[i] = blk_forward(
x,
getattr(self,f"blk{i}"),
self.size[i], self.ratio[i],
getattr(self,f"cls{i}"),
getattr(self,f"bbox{i}"),
)
anchors = torch.cat(anchors,dim=1)
cls_preds = concat_preds(cls_preds)
cls_preds = cls_preds.reshape(cls_preds.shape[0],-1,self.num_classes+1)
bbox_preds = concat_preds(bbox_preds)
return anchors,cls_preds,bbox_preds
net = TinySSD(num_classes=1, num_anchors=num_anchors,sizes=sizes,ratios=ratios)
x = torch.zeros((32,3,256,256))
anchors, cls_preds, bbox_preds = net(x)
print("outshape anchors:",anchors.shape)
print("outshape cls_preds:",cls_preds.shape)
print("outshape bbox_preds:",bbox_preds.shape)
# outshape anchors: torch.Size([1, 5444, 4])
# outshape cls_preds: torch.Size([32, 5444, 2])
# outshape bbox_preds: torch.Size([32, 21776])
batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size=batch_size)
device, net = d2l.try_gpu(), TinySSD(num_classes=1, num_anchors=num_anchors,sizes=sizes,ratios=ratios)
trainer = torch.optim.SGD(net.parameters(),lr=0.2, weight_decay=5e-4)
cls_loss = nn.CrossEntropyLoss(reduction="None")
bbox_loss = nn.L1Loss(reduction="None")
# 计算损失(分类损失和偏移损失)
def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
batch_size,num_classes = cls_preds.shape[0], cls_preds.shape[2]
# 计算锚框对每一个分类和真实分类之间的距离
cls = cls_loss(cls_preds.reshape(-1, num_classes), cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks).mean(dim=1)
return cls + bbox
# 分类精度
def cls_eval(cls_preds, cls_labels):
# 由于类别预测结果放在最后一维,argmax需要指定最后一维。
return float((cls_preds.argmax(dim=-1).type(cls_labels.dtype) == cls_labels).sum())
def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):
# 训练精确度的和,训练精确度的和中的示例数
# 绝对误差的和,绝对误差的和中的示例数
metric = d2l.Accumulator(4)
net.train()
for features, target in train_iter:
timer.start()
trainer.zero_grad()
X, Y = features.to(device), target.to(device)
# 生成多尺度的锚框,为每个锚框预测类别和偏移量
anchors, cls_preds, bbox_preds = net(X)
# 为每个锚框标注类别和偏移量
bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)
# 根据类别和偏移量的预测和标注值计算损失函数
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
bbox_masks)
l.mean().backward()
trainer.step()
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),
bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.numel())
cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on '
f'{str(device)}')
![](https://img.haomeiwen.com/i12824314/90066cc72fd80441.png)
# 预测一下
X = torchvision.io.read_image('../img/banana.jpg').unsqueeze(0).float()
img = X.squeeze(0).permute(1, 2, 0).long()
def predict(X):
net.eval()
anchors, cls_preds, bbox_preds = net(X.to(device))
cls_probs = F.softmax(cls_preds, dim=2).permute(0, 2, 1)
output = d2l.multibox_detection(cls_probs, bbox_preds, anchors)
idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
return output[0, idx]
output = predict(X)
def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img)
for row in output:
score = float(row[1])
if score < threshold:
continue
h, w = img.shape[0:2]
bbox = [row[2:6] * torch.tensor((w, h, w, h), device=row.device)]
d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')
display(img, output.cpu(), threshold=0.9)
![](https://img.haomeiwen.com/i12824314/dfb665960b9d37dc.png)
网友评论