美文网首页
极大似然估计

极大似然估计

作者: 吴烨JS | 来源:发表于2017-08-19 09:29 被阅读0次

现实情况中我们可能会遇到这样的一些例子,需要得到一所高校有车学生的分布情况(假定符合参数为p的伯努利分布),某地区成年男性的身高分布情况(假定符合参数为u1,σ1的正态分布),南极洲成年帝企鹅的体重分布(假定符合参数为u2,σ2的正态分布)等等。

由于时间和经费的限制,不可能进行全面统计,我们只能通过一定的观察,得到一系列的观察值,在上述假定概率分布模型上,现在需要求出是哪个具体的概率分布生成了这些观察值。要解决这个问题,就需要用到参数估计方法,即估计出上述的参数p,(u,σ),而最大似然估计就是这样一种方法。

最大似然估计是一个在已知观察结果(即样本)和给定概率分布模型的基础上,估计概率分布模型的参数,并使得在该参数下,生成这个已知样本的可能性最大的方法。

举第一个例子,设我们已经获得了一个样本集{X1,X2,…,Xn},其中Xi=0表示选取的学生没有车,Xi= 1表示选取的学生有车。 Xi服从概率为未知参数p的伯努利分布,那么根据伯努利分布的定义,每个Xi的概率质量函数为:

f(xi;p)=pxi(1−p)1−xi

其中Xi=0或1。 首先,要通过极大似然估计方法求出参数p,需要定义似然函数。前面提到,最大似然估计就是去找参数估计值,使得已经观察到的样本值发生概率最大。既然这些样本已经实现了,其发生概率最大才符合逻辑。这就是求所有观测值样本的联合概率最大化。因此,似然函数在形式上,其实就是样本的联合概率。对连续型随机变量和离散型随机变量,样本的似然函数分别是概率密度和概率质量函数的连乘形式。

对于本例,似然函数为:

L(p)=∏i=1nf(xi;p)=px1(1−p)1−x1×px2(1−p)1−x2×...×pxn(1−p)1−xn

将上式化简,我们得到:

L(p)=p∑xi(1−p)n−∑xi

在实际应用中,为了求解方便,一般使用似然函数的对数。

ln(L(p))=ln(p∑xi(1−p)n−∑xi)=(∑xi)ln(p)+(n−∑xi)ln(1−p)

我们知道,对数函数是单调递增的。这意味着使得ln(L(p))获得极大值的p也是使得L(p)获得极大值的p。下图为对数函数的图像。

利用一元函数求极大值的方法,对上式两边求p的导数,并令其等于0:

∂ln(L(p))∂p=∑xip−(n−∑xi)1−p≡0

两边乘以p(1-p),得到:

(∑xi)(1−p)−(n−∑xi)p=0

化简后:

∑xi−np=0

需要说明的是,这里的p实际上是我们估计的p,因此使用如下的符号:

p̂=∑xin=∑ni=1xin

假设我们随机观察了30个学生的样本,样本集为:

{0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0}

通过上述的极大似然估计方法,可以求出预估的参数为:

p̂=∑ni=1xin=530=0.167

再来看另一个例子:

假定该高校男生的体重呈均值为μ,标准差为σ的正态分布。我们获得了随机采样10个男学生的体重如下(单位:斤):

序号体重

1115

2122

3130

4127

5149

6160

7152

8138

9149

10180

正态分布的概率密度函数为:

f(xi;μ,σ2)=1σ2π‾‾‾√exp[−(xi−μ)22σ2]

根据上面的定义,似然函数是概率质量函数(离散随机变量)或概率密度函数(连续随机变量)的乘积,因此:

L(μ,σ)=1σn(2π‾‾‾√)nexp[−12σ2∑i=1n(xi−μ)2]

我们把上式的似然函数可以看作是参数θ1和θ2的函数,其中:

θ1=μ,θ2=σ2

因此,似然函数可以改写为:

L(θ1,θ2)=∏i=1nf(xi;θ1,θ2)=θ−n/22(2π)−n/2exp[−12θ2∑i=1n(xi−θ1)2]

而相应的对数似然函数则为:

logL(θ1,θ2)=−n2logθ2−n2log(2π)−∑ni=1(xi−θ1)22θ2

这是一个关于θ1和θ2的二元函数,根据二元函数求极值的方法,先求θ1的偏导数(partial derivative),然后设偏导数为0。我们得到:

∂logL(θ1,θ2)∂θ1=−2∑ni=1(xi−θ1)2θ2=0

∑i=1n(xi−θ1)=0

∑i=1nxi−nθ1=0

由此我们得到参数θ1的极大似然估计是:

θ1^=μ̂=∑ni=1xin=x¯

现在对θ2求偏导数(partial derivative),然后设偏导数为0。我们得到:

∂logL(θ1,θ2)∂θ2=−n2θ2+∑ni=1(xi−θ1)22θ22=0

两边同时乘以2θ22:

−nθ2+∑i=1n(xi−θ1)2=0

由此得到参数θ2的极大似然估计是:

θ2^=σ̂2=∑(xi−θ1)2n=∑(xi−x¯)2n

概括起来,我们已经求出了均值μ和方差σ2的最大似然估计:

μ̂=∑xin=x¯,σ̂2=∑(xi−x¯)2n

你发现没有,这实质上就是教科书中均值和方差的计算公式!

最后我们根据样本数据,计算μ和方差σ:

μ̂=∑xin=142.2,σ̂2=∑(xi−x¯)2n=18.654

于是,我们得到求极大似然估计的一般步骤:

- 根据设定概率模型,写出联合概率形式的似然函数

- 对似然函数取对数,并整理

- 求导数或偏导数,并赋值为0

- 求解方程

最后,谈谈“似然估计”的使用前提:

- 已经假定了概率模型,如二项分布,正态分布等;

- 已经有了一些观察结果的集合。

相关文章

  • 极大似然估计

    极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计...

  • 极大似然估计

    极大似然估计(Maximum Likelihood Estimation,MLE),也称最大似然估计。“似然”是对...

  • 极大似然估计

    序 极大似然估计和最大后验估计是机器学习中常用的两种参数估计方法。本次记录MLE的原理和用法,为后续推导LR等目标...

  • 极大似然估计

    动机 在学习机器学习算法过程中,发现很多算法策略都采用极大似然估计, 如:线性、逻辑回归,决策树,隐马尔科夫模型。...

  • 极大似然估计

    极大似然估计是一种参数估计的方法(知模型求参数)。先验概率是 知因求果,后验概率是 知果求因,极大似然是 知果求最...

  • 极大似然估计

    现实情况中我们可能会遇到这样的一些例子,需要得到一所高校有车学生的分布情况(假定符合参数为p的伯努利分布),某地区...

  • 极大似然估计

    似然函数 似然函数(likelihood function)是一种关于统计模型中的参数的函数,既然是函数那自变量就...

  • 极大似然估计

    极大似然估计 我们也可以理解为最像估计法或者最可能估计法。 通俗理解:对于一个事件的发生我们的猜测是基于一...

  • 极大似然估计

    1. 什么是似然函数? 本质是关于随机数X的概率密度函数,只不过没有给定参数.概率密度函数反映的是给定值 的事件发...

  • 极大似然估计

    极大似然估计[https://zhuanlan.zhihu.com/p/26614750]

网友评论

      本文标题:极大似然估计

      本文链接:https://www.haomeiwen.com/subject/jgttdxtx.html