准备工作
1.首先要确定你本地有hadoop 的环境
- 新建maven 项目
- 引入 依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0-cdh5.7.0</version>
</dependency>
- 准备测试数据:

话不多说,直接上java 代码
package com.zyh.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
/**
* 使用MapReduce开发WordCount用用程序
*/
public class WordCountApp {
/**
* 读取输入文件
* <p>
* Mapper
* LongWritable 文件的偏移量
* Text hadoop 里面的text 就是 java里面的String
*/
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
LongWritable one = new LongWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 接收到的 每一行数据
String line = value.toString();
// 按照制定分隔符分开
String[] words = line.split(" ");
for (String word : words) {
context.write(new Text(word), one);
}
}
}
/**
* 归并操作
*/
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
/**
* 封装了所有的mapreduce的 作业信息
* @param args
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//创建configuration
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration, "wordCount");
//设置 job的处理类
job.setJarByClass(WordCountApp.class);
//设置作业处理的输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
//设置map相关的参数
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//设置 reduce 相关参数
job.setReducerClass(MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
代码写完需要编译运行
运行自己开发的 mapreduce 需要操作如下 :
- 首先到Hadoop sbin目录运行 start-all.sh
2.运行 jar 后面加入我们 的主类名 。 和两个参数 分别为 输入路径地址 和输出
java jar jar包 主类名全路径 hadoop输入文件路径 hadoop 输出结果文件路径
网友评论