美文网首页
18个常见的数据分析面试题-概率统计类

18个常见的数据分析面试题-概率统计类

作者: 可乐的数据分析之路 | 来源:发表于2020-11-17 06:08 被阅读0次

    总结了一些常见的概率与统计类的数据分析面试题,不定期更新......

    随机变量的含义

    一个随机事件的所有可能的值X,且每个可能值X都有确定的概率P,X就是P(X)的随机变量。比如掷骰子中出现的点数

    随机变量和随机试验间有什么关系

    • 随机试验:相同条件下对某随机现象进行的大量重复观测的试验,如掷硬币100次统计正面朝上的次数
    • 随机变量是用来描述随机试验结果的。

    划分连续型随机变量和离散型随机变量的依据

    • 离散型随机变量:随机变量X能被一一列举出来,如一批产品中次品的数量,某地区人口的出生数等。
    • 连续型随机变量:随机变量X不能被一一列举出来,如一批电子元器件的寿命,身高、体重等。

    所以划分二者的依据是随机变量是否可数

    变量独立和不相关的区别

    若X和Y不相关,通常认为X和Y之间是没有线性关系,但不排除没有其他关系

    若X和Y独立,是没有关系,互不干扰

    因此,“不相关”是一个比“独立”要弱的概念

    常见分布的分布函数/概率密度函数,以及分布的特性。

    分别从离散型和连续型两方面说:

    离散型随机变量的分布

    • 二项分布
      进行一系列独立试验 -> 每一次试验都存在成功和失败的可能,且成功的概率相同 -> 试验次数有限。

    二项分布记做X~B(n,p),X表示n次试验中的成功次数,我们要求的是成功的次数

    如发放100张优惠券,其中x张优惠券被使用的概率就是一个二项分布。

    • 伯努利分布
      0-1分布,每次试验的结果只有2种,是n=1的二项分布的特殊情况

    如掷硬币,只有正面朝上或反面朝上两种情况

    • 几何分布
      独立试验->拿到一种卡片的概率相同->为了集齐卡片要进行多少次试验

    • 泊松分布
      单独事件在给定区间内随机、独立地发生(给定区间可以是时间或空间) -> 已知该区间内的事件平均发生次数,且为有限数值。

    如某加油站,平均每小时来加油的车辆为10辆,泊松分布求的这个加油站每小时前来加油的车辆次数的概率

    关于离散型随机变量分布可参考:

    连续型随机变量的分布

    • 正态分布
      又叫高斯分布,正态分布通过参数平均值和方差确定


    • 均匀分布
      也叫矩形分布,概率密度函数的结果是一个固定的数值


    均匀分布在自然情况下极为罕见,它的概率密度函数为:


    image
    • 指数分布
      指数分布是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。如旅客进机场的时间间隔,还有许多电子产品的寿命分布一般服从指数分布。

    其概率密度函数为:

    image

    指数分布具有无记忆的关键性质。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。

    关于连续型随机变量的分布,可参考:

    协方差和相关系数的区别

    • 协方差

    只表示相关的方向

    衡量两个变量的总体误差,方差是协方差的特殊情况,即当两个变量是相同的情况。

    如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值(你变大,我也变大,协方差就是正的)。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

    也就是说,协方差为正,表示两个变量同变化,为负,不同变化

    并且协方差的绝对值不反映线性相关的程度(其绝对值与变量的取值范围有关系)

    但是嘞协方差为0的两个随机变量是不相关的

    • 相关系数

    不仅表示线性相关的方向,还能衡量其相关程度

    研究变量之间线性相关程度的量,取值范围是[-1,1]。

    相关系数也可以看成协方差:一种剔除了两个变量量纲影响、标准化后的特殊协方差。

    中位数是否等于期望

    标准正态分布中位数等于期望
    右偏(正偏)态时,中位数小于期望
    左偏(负偏)态时,中位数大于期望

    正态分布的基本特征是什么

    正态分布又叫高斯分布,是一个钟形曲线,曲线对称,中央部分的概率密度最大,越往两边,概率密度越小。μ决定了曲线的中央位置,σ决定了曲线的分散性,σ越大,曲线越平缓,σ越小,曲线越陡峭。

    很多实际问题都是符合正态分布的,如身高、体重等。正态分布在质量管理中也应用的非常广泛,“3σ原则”就是在正态分布的原理上建立的。
    3σ原则是:

    • 数值分布在(μ—σ,μ+σ)中的概率为0.6826
    • 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544
    • 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974
      因此可以认为,Y 的取值几乎全部集中在(μ—3σ,μ+3σ)]区间内,超出这个范围的可能性仅占不到0.3%,这是一个小概率事件,通常在一次试验中是不会发生的,一旦发生就可以认为质量出现了异常。
    image

    列举常用的大数定律及其区别

    在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。

    在重复投掷一枚硬币的随机试验中,观测投掷了n次硬币中出现正面的次数。不同的n次试验,出现正面的频率可能不同,但当试验的次数n越来越大时,出现正面的频率将大体上逐渐接近于1/2。这就是大数定律。

    随机变量X随着试验次数的增加,X的均值会越发趋近于E(X)

    中心极限定理

    假设一组随机变量相互独立且同分布,当n足够大时,均值的分布接近于正态分布

    中心极限定理作用:
    (1)在没有办法得到总体全部数据的情况下,我们可以用样本来估计总体。
    (2)根据总体的平均值和标准差,判断某个样本是否属于总体。

    假设检验的基本思想

    小概率反证法。即为了检验一个假设是否成立,我们先假设它成立,在原假设成立的前提下,如果出现了不合理的事件,则说明样本与总体的差异是显著的,就拒绝原假设,如果没有出现不合理的事件,就不拒绝原假设。

    这里所述的不合理的事件指的就是小概率事件,通常情况下我们认为一个小概率事件基本上不会发生,如果发生了,说明它就不是一个小概率事件了,所以要拒绝原假设。

    假设检验中的两类错误

    第I类错误:弃真,原假设为真,却被我们拒绝了。
    第II类错误:取伪,原假设为假,却没被拒绝。
    [图片上传失败...(image-f8f498-1605564475501)]

    如何平衡这两类错误?

    我们要尽可能地将犯两类错误的概率降到最低。但是,在样本容量固定的前提下,减少犯第I类错误的概率,必然会增加犯第II类错误的概率,一般来说,我们总是先控制犯第I类错误的概率,使它不大于显著性水平。而犯第II类错误的概率依赖于样本容量的大小,因此对样本容量的选择上,也要有所考量。

    解释P值显著性水平

    • P值:当原假设为真时,样本观察结果或更极端的结果出现的概率就是P值

    区分显著性水平和置信区间

    • 显著性水平:希望在样本结果的不可能程度达到多大时,就拒绝原假设,也就是小概率事件发生的概率。则是假设真值是多少,然后检验这个假设是否可能为真。
    • 置信区间,目的是根据样本构造一个区间,然后希望这个区间可以把真值包含进去,但是并不知道这个真值是多少?

    条件概率

    P(A|B)=P(AB)/P(B),条件概率P(A|B) 指在事件B发生的条件下事件A发生的概率,P(AB)表示事件A和B同时发生的概率,P(B)是事件B发生的概率,其演化式可以得到:P(A|B)P(B)=P(B|A)P(A)

    全概率公式

    假设事件B有两种发生方式,与事件A一起发生;不与事件A一起发生,那么可以用下面的公式得到事件B发生的概率:



    又由条件概率可以推导出:



    代入得到:
    全概率公式

    这就是全概率公式,由条件概率计算一个特定事件的概率。

    贝叶斯公式

    假如已知的条件概率是P(B|A),那么贝叶斯公式则提供了一种计算逆条件概率的方法,也就是要求P(A|B)的概率。
    首先条件概率:



    刚刚也推导了



    再将全概率公式P(B)代入,就得到:
    贝叶斯公式

    发现一个有趣的案例
    一日某超市发生盗窃案,嫌疑人甲发生盗窃的可能性为10%,嫌疑人乙发生盗窃的可能性为90%,目击者称盗窃者是甲,目击者证言可信度为80%,那么现在请估算出目击者证言的准确度。
    嫌疑人甲盗窃的概率为P(A)=10%
    嫌疑人乙盗窃的概率为P(B)=P(A)=90% 目击者证言可信度的概率为P(C) 在甲盗窃的前提下目击者称盗窃者是甲的概率为P(C|A)=80% 在甲盗窃的前提下目击者称盗窃者不是甲的概率为P(C|A)=20%
    现在要求的是P(A|C)也就是目击者证言可信度准确的前提下甲盗窃的概率。

    我们要求的是一个条件概率P(A|C),已知的一个条件概率P(C|A)刚好是要求的条件概率的逆概率,这里就要用到贝叶斯公式了。
    P(A|C)=P(A)P(C|A)/(P(A)P(C|A)+P(A)P(C|A))
    =10%80% / 10%80%+ 90%*20%
    =30.77%

    相关文章

      网友评论

          本文标题:18个常见的数据分析面试题-概率统计类

          本文链接:https://www.haomeiwen.com/subject/jhermktx.html