美文网首页
今日学术视野(2019.3.8)

今日学术视野(2019.3.8)

作者: ZQtGe6 | 来源:发表于2019-03-08 04:58 被阅读132次

cs.AI - 人工智能
cs.CL - 计算与语言
cs.CV - 机器视觉与模式识别
cs.DC - 分布式、并行与集群计算
cs.DS - 数据结构与算法
cs.IR - 信息检索
cs.IT - 信息论
cs.LG - 自动学习
cs.MM - 多媒体
cs.NE - 神经与进化计算
cs.NI - 网络和互联网体系结构
cs.RO - 机器人学
cs.SI - 社交网络与信息网络
cs.SY - 系统与控制
eess.SP - 信号处理
gr-qc - 广义相对论与量子宇宙学
math.CO - 组合数学
math.HO - 历史与概述
math.OC - 优化与控制
math.PR - 概率
math.ST - 统计理论
physics.soc-ph - 物理学与社会
q-bio.QM - 定量方法
stat.AP - 应用统计
stat.CO - 统计计算
stat.ME - 统计方法论
stat.ML - (统计)机器学习

• [cs.AI]A Grounded Interaction Protocol for Explainable Artificial Intelligence
• [cs.AI]AAAI-2019 Workshop on Games and Simulations for Artificial Intelligence
• [cs.AI]Autonomy, Authenticity, Authorship and Intention in computer generated art
• [cs.AI]Synthesizing Chemical Plant Operation Procedures using Knowledge, Dynamic Simulation and Deep Reinforcement Learning
• [cs.AI]Understanding the Artificial Intelligence Clinician and optimal treatment strategies for sepsis in intensive care
• [cs.CL]Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases
• [cs.CL]Dixit: Interactive Visual Storytelling via Term Manipulation
• [cs.CL]From Knowledge Map to Mind Map: Artificial Imagination
• [cs.CL]KBQA: Learning Question Answering over QA Corpora and Knowledge Bases
• [cs.CL]Negative Training for Neural Dialogue Response Generation
• [cs.CL]Persona-Aware Tips Generation
• [cs.CL]SNU_IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution Mismatch in Conversational Classification
• [cs.CL]Tactical Rewind: Self-Correction via Backtracking in Vision-and-Language Navigation
• [cs.CV]A Synchronized Multi-Modal Attention-Caption Dataset and Analysis
• [cs.CV]Abnormal Chest X-ray Identification With Generative Adversarial One-Class Classifier
• [cs.CV]Age Progression and Regression with Spatial Attention Modules
• [cs.CV]Bounded Residual Gradient Networks (BReG-Net) for Facial Affect Computing
• [cs.CV]CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning
• [cs.CV]Characterizing Human Behaviours Using Statistical Motion Descriptor
• [cs.CV]Compressing complex convolutional neural network based on an improved deep compression algorithm
• [cs.CV]Crowd Counting Using Scale-Aware Attention Networks
• [cs.CV]Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation
• [cs.CV]Deep Transfer Learning for Multiple Class Novelty Detection
• [cs.CV]Defining Image Memorability using the Visual Memory Schema
• [cs.CV]DepthwiseGANs: Fast Training Generative Adversarial Networks for Realistic Image Synthesis
• [cs.CV]Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries
• [cs.CV]Image captioning with weakly-supervised attention penalty
• [cs.CV]Large-Scale Pedestrian Retrieval Competition
• [cs.CV]Learning multimodal representations for sample-efficient recognition of human actions
• [cs.CV]Object Counting and Instance Segmentation with Image-level Supervision
• [cs.CV]Photo-realistic Image Super-resolution with Fast and Lightweight Cascading Residual Network
• [cs.CV]Prostate Segmentation from 3D MRI Using a Two-Stage Model and Variable-Input Based Uncertainty Measure
• [cs.CV]Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks
• [cs.CV]Robust Video Background Identification by Dominant Rigid Motion Estimation
• [cs.CV]Self-Supervised Learning of 3D Human Pose using Multi-view Geometry
• [cs.CV]Semantic Adversarial Network with Multi-scale Pyramid Attention for Video Classification
• [cs.CV]Transfer feature generating networks with semantic classes structure for zero-shot learning
• [cs.CV]Understanding and Visualizing Deep Visual Saliency Models
• [cs.CV]Video-based surgical skill assessment using 3D convolutional neural networks
• [cs.CV]Visual Discourse Parsing
• [cs.DC]Exploring Mixed Integer Programming Reformulations for Virtual Machine Placement with Disk Anti-Colocation Constraints
• [cs.DS]Runtime Analysis of RLS and (1+1) EA for the Dynamic Weighted Vertex Cover Problem
• [cs.IR]Coupled CycleGAN: Unsupervised Hashing Network for Cross-Modal Retrieval
• [cs.IT]Channel Decoding with Quantum Approximate Optimization Algorithm
• [cs.IT]Closed-Loop Sparse Channel Estimation for Wideband MmWave FD-MIMO Systems
• [cs.IT]Compressed CSI Feedback With Learned Measurement Matrix for mmWave Massive MIMO
• [cs.IT]Distributed Policy Learning Based Random Access for Diversified QoS Requirements
• [cs.IT]Generalized Approximate Message Passing for Massive MIMO mmWave Channel Estimation with Laplacian Prior
• [cs.IT]Generalized Fast-Convolution-based Filtered-OFDM: Techniques and Application to 5G New Radio
• [cs.IT]In-Band Pilot Overhead in Ultra-Reliable Low Latency Decode and Forward Relaying
• [cs.IT]Linear Programming Bounds
• [cs.IT]On the Optimality of Ali-Niesen Decentralized Coded Caching Scheme With and Without Error Correction
• [cs.IT]Optimized Power Control for Massive MIMO with Underlaid D2D Communications
• [cs.IT]Spectral Method for Phase Retrieval: an Expectation Propagation Perspective
• [cs.LG]A Priori Estimates of the Population Risk for Residual Networks
• [cs.LG]Autoregressive Convolutional Recurrent Neural Network for Univariate and Multivariate Time Series Prediction
• [cs.LG]Detecting Overfitting via Adversarial Examples
• [cs.LG]Evaluation of Neural Network Uncertainty Estimation with Application to Resource-Constrained Platforms
• [cs.LG]Explaining Anomalies Detected by Autoencoders Using SHAP
• [cs.LG]Fast Graph Representation Learning with PyTorch Geometric
• [cs.LG]High-Fidelity Image Generation With Fewer Labels
• [cs.LG]Implicit Regularization in Over-parameterized Neural Networks
• [cs.LG]LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
• [cs.LG]Learning from Higher-Layer Feature Visualizations
• [cs.LG]On the Quantization of Cellular Neural Networks for Cyber-Physical Systems
• [cs.LG]PROPS: Probabilistic personalization of black-box sequence models
• [cs.LG]Positively Scale-Invariant Flatness of ReLU Neural Networks
• [cs.LG]Relational Pooling for Graph Representations
• [cs.LG]Representative Task Self-selection for Flexible Clustered Lifelong Learning
• [cs.LG]Safeguarded Dynamic Label Regression for Generalized Noisy Supervision
• [cs.LG]Safety-Guided Deep Reinforcement Learning via Online Gaussian Process Estimation
• [cs.LG]Semi-Supervised Few-Shot Learning with Local and Global Consistency
• [cs.LG]Using Natural Language for Reward Shaping in Reinforcement Learning
• [cs.LG]Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization
• [cs.MM]Camera Obscurer: Generative Art for Design Inspiration
• [cs.NE]A Scalable Test Suite for Continuous Dynamic Multiobjective Optimisation
• [cs.NE]Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search
• [cs.NE]Evolutionary Cell Aided Design for Neural Network Architectures
• [cs.NE]SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks with at most one Spike per Neuron
• [cs.NE]Widely Linear Complex-valued Autoencoder: Dealing with Noncircularity in Generative-Discriminative Models
• [cs.NI]WiFi-Based Indoor Localization via Multi-Band Splicing and Phase Retrieval
• [cs.RO]Combining Optimal Control and Learning for Visual Navigation in Novel Environments
• [cs.RO]Development of SAM: cable-Suspended Aerial Manipulator
• [cs.RO]FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
• [cs.RO]GQ-STN: Optimizing One-Shot Grasp Detection based on Robustness Classifier
• [cs.RO]Lambda-Field: A Continuous Counterpart of the Bayesian Occupancy Grid for Risk Assessment
• [cs.RO]Learning a Lattice Planner Control Set for Autonomous Vehicles
• [cs.RO]Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization
• [cs.RO]Multiple configurations for puncturing robot positioning
• [cs.RO]Open-Sourced Reinforcement Learning Environments for Surgical Robotics
• [cs.RO]Optimal Dexterity for a Snake-like Surgical Manipulator using Patient-specific Task-space Constraints in a Computational Design Algorithm
• [cs.RO]Pose Estimation of Vehicles Over Uneven Terrain
• [cs.RO]RINS-W: Robust Inertial Navigation System on Wheels
• [cs.RO]Spiking Neural Network on Neuromorphic Hardware for Energy-Efficient Unidimensional SLAM
• [cs.RO]The AI Driving Olympics at NeurIPS 2018
• [cs.RO]Towards Better Human Robot Collaboration with Robust Plan Recognition and Trajectory Prediction
• [cs.RO]Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
• [cs.RO]Training in Task Space to Speed Up and Guide Reinforcement Learning
• [cs.RO]Trends, Challenges and Adopted Strategies in RoboCup@Home
• [cs.RO]Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives
• [cs.RO]Viewpoint Optimization for Autonomous Strawberry Harvesting with Deep Reinforcement Learning
• [cs.SI]Gaps in Information Access in Social Networks
• [cs.SI]Graph Neural Networks for User Identity Linkage
• [cs.SI]Signed Link Prediction with Sparse Data: The Role of Personality Information
• [cs.SY]Nonlinear input design as optimal control of a Hamiltonian system
• [eess.SP]Algorithms for Piecewise Constant Signal Approximations
• [eess.SP]DeepTurbo: Deep Turbo Decoder
• [eess.SP]Energy-Efficient Edge-Facilitated Wireless Collaborative Computing using Map-Reduce
• [eess.SP]Learning How to Demodulate from Few Pilots via Meta-Learning
• [eess.SP]SleepEEGNet: Automated Sleep Stage Scoring with Sequence to Sequence Deep Learning Approach
• [gr-qc]Deep Learning at Scale for Gravitational Wave Parameter Estimation of Binary Black Hole Mergers
• [math.CO]Planar Polynomials arising from Linearized polynomials
• [math.HO]A data analysis of women's trails among ICM speakers
• [math.OC]Convergence of gradient descent-ascent analyzed as a Newtonian dynamical system with dissipation
• [math.PR]Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus
• [math.PR]Hurst index estimation in stochastic differential equations driven by fractional Brownian motion
• [math.PR]Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean
• [math.ST]A Prediction Tournament Paradox
• [math.ST]Hoeffding-Type and Bernstein-Type Inequalities for Right Censored Data
• [physics.soc-ph]Evolutionary Dynamics of Cultural Memes and Application to Massive Movie Data
• [q-bio.QM]An Efficient Production Process for Extracting Salivary Glands from Mosquitoes
• [stat.AP]A Sketch of Some Stochastic Models and Analysis Methods for Fiber Bundle Failure under Increasing Tensile Load
• [stat.AP]A heuristic approach for lactate threshold estimation for training decision-making: An accessible and easy to use solution for recreational runners
• [stat.AP]Blinded continuous information monitoring of recurrent event endpoints with time trends in clinical trials
• [stat.AP]Graph-aware linear mixed effects models for brain connectivity networks
• [stat.CO]Causal Discovery Toolbox: Uncover causal relationships in Python
• [stat.ME]Economic variable selection
• [stat.ME]Emulating computer models with step-discontinuous outputs using Gaussian processes
• [stat.ME]Threshold Selection in Univariate Extreme Value Analysis
• [stat.ML]Limitations of Pinned AUC for Measuring Unintended Bias
• [stat.ML]Neural Empirical Bayes
• [stat.ML]Orthogonal Structure Search for Efficient Causal Discovery from Observational Data
• [stat.ML]Size of Interventional Markov Equivalence Classes in Random DAG Models

·····································

• [cs.AI]A Grounded Interaction Protocol for Explainable Artificial Intelligence
Prashan Madumal, Tim Miller, Liz Sonenberg, Frank Vetere
http://arxiv.org/abs/1903.02409v1

• [cs.AI]AAAI-2019 Workshop on Games and Simulations for Artificial Intelligence
Marwan Mattar, Roozbeh Mottaghi, Julian Togelius, Danny Lange
http://arxiv.org/abs/1903.02172v1

• [cs.AI]Autonomy, Authenticity, Authorship and Intention in computer generated art
Jon McCormack, Toby Gifford, Patrick Hutchings
http://arxiv.org/abs/1903.02166v1

• [cs.AI]Synthesizing Chemical Plant Operation Procedures using Knowledge, Dynamic Simulation and Deep Reinforcement Learning
Shumpei Kubosawa, Takashi Onishi, Yoshimasa Tsuruoka
http://arxiv.org/abs/1903.02183v1

• [cs.AI]Understanding the Artificial Intelligence Clinician and optimal treatment strategies for sepsis in intensive care
Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, A. Aldo Faisal
http://arxiv.org/abs/1903.02345v1

• [cs.CL]Bidirectional Attentive Memory Networks for Question Answering over Knowledge Bases
Yu Chen, Lingfei Wu, Mohammed J. Zaki
http://arxiv.org/abs/1903.02188v1

• [cs.CL]Dixit: Interactive Visual Storytelling via Term Manipulation
Chao-Chun Hsu, Yu-Hua Chen, Zi-Yuan Chen, Hsin-Yu Lin, Ting-Hao, Huang, Lun-Wei Ku
http://arxiv.org/abs/1903.02230v1

• [cs.CL]From Knowledge Map to Mind Map: Artificial Imagination
Ruixue Liu, Baoyang Chen, Xiaoyu Guo, Yan Dai, Meng Chen, Zhijie Qiu, Xiaodong He
http://arxiv.org/abs/1903.01080v2

• [cs.CL]KBQA: Learning Question Answering over QA Corpora and Knowledge Bases
Wanyun Cui, Yanghua Xiao, Haixun Wang, Yangqiu Song, Seung-won Hwang, Wei Wang
http://arxiv.org/abs/1903.02419v1

• [cs.CL]Negative Training for Neural Dialogue Response Generation
Tianxing He, James Glass
http://arxiv.org/abs/1903.02134v1

• [cs.CL]Persona-Aware Tips Generation
Piji Li, Zihao Wang, Lidong Bing, Wai Lam
http://arxiv.org/abs/1903.02156v1

• [cs.CL]SNU_IDS at SemEval-2019 Task 3: Addressing Training-Test Class Distribution Mismatch in Conversational Classification
Sanghwan Bae, Jihun Choi, Sang-goo Lee
http://arxiv.org/abs/1903.02163v1

• [cs.CL]Tactical Rewind: Self-Correction via Backtracking in Vision-and-Language Navigation
Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe Gan, Jingjing Liu, Jianfeng Gao, Yejin Choi, Siddhartha Srinivasa
http://arxiv.org/abs/1903.02547v1

• [cs.CV]A Synchronized Multi-Modal Attention-Caption Dataset and Analysis
Sen He, Hamed R. Tavakoli, Ali Borji, Nicolas Pugeault
http://arxiv.org/abs/1903.02499v1

• [cs.CV]Abnormal Chest X-ray Identification With Generative Adversarial One-Class Classifier
Yuxing Tang, Youbao Tang, Mei Han, Jing Xiao, Ronald M. Summers
http://arxiv.org/abs/1903.02040v1

• [cs.CV]Age Progression and Regression with Spatial Attention Modules
Qi Li, Yunfan Liu, Zhenan Sun
http://arxiv.org/abs/1903.02133v1

• [cs.CV]Bounded Residual Gradient Networks (BReG-Net) for Facial Affect Computing
Behzad Hasani, Pooran Singh Negi, Mohammad H. Mahoor
http://arxiv.org/abs/1903.02110v1

• [cs.CV]CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning
Chi Zhang, Guosheng Lin, Fayao Liu, Rui Yao, Chunhua Shen
http://arxiv.org/abs/1903.02351v1

• [cs.CV]Characterizing Human Behaviours Using Statistical Motion Descriptor
Eissa Jaber Alreshidi, Mohammad Bilal
http://arxiv.org/abs/1903.02236v1

• [cs.CV]Compressing complex convolutional neural network based on an improved deep compression algorithm
Jiasong Wu, Hongshan Ren, Youyong Kong, Chunfeng Yang, Lotfi Senhadji, Huazhong Shu
http://arxiv.org/abs/1903.02358v1

• [cs.CV]Crowd Counting Using Scale-Aware Attention Networks
Mohammad Asiful Hossain, Mehrdad Hosseinzadeh, Omit Chanda, Yang Wang
http://arxiv.org/abs/1903.02025v1

• [cs.CV]Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation
Zhi Tian, Chunhua Shen, Tong He, Youliang Yan
http://arxiv.org/abs/1903.02120v1

• [cs.CV]Deep Transfer Learning for Multiple Class Novelty Detection
Pramuditha Perera, Vishal M. Patel
http://arxiv.org/abs/1903.02196v1

• [cs.CV]Defining Image Memorability using the Visual Memory Schema
Erdem Akagunduz, Adrian G. Bors, Karla K. Evans
http://arxiv.org/abs/1903.02056v1

• [cs.CV]DepthwiseGANs: Fast Training Generative Adversarial Networks for Realistic Image Synthesis
Mkhuseli Ngxande, Jules-Raymond Tapamo, Michael Burke
http://arxiv.org/abs/1903.02225v1

• [cs.CV]Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries
Jawadul H. Bappy, Cody Simons, Lakshmanan Nataraj, B. S. Manjunath, Amit K. Roy-Chowdhury
http://arxiv.org/abs/1903.02495v1

• [cs.CV]Image captioning with weakly-supervised attention penalty
Jiayun Li, Mohammad K. Ebrahimpour, Azadeh Moghtaderi, Yen-Yun Yu
http://arxiv.org/abs/1903.02507v1

• [cs.CV]Large-Scale Pedestrian Retrieval Competition
Da Li, Zhang Zhang
http://arxiv.org/abs/1903.02137v1

• [cs.CV]Learning multimodal representations for sample-efficient recognition of human actions
Miguel Vasco, Francisco S. Melo, David Martins de Matos, Ana Paiva, Tetsunari Inamura
http://arxiv.org/abs/1903.02511v1

• [cs.CV]Object Counting and Instance Segmentation with Image-level Supervision
Hisham Cholakkal, Guolei Sun, Fahad Shahbaz Khan, Ling Shao
http://arxiv.org/abs/1903.02494v1

• [cs.CV]Photo-realistic Image Super-resolution with Fast and Lightweight Cascading Residual Network
Namhyuk Ahn, Byungkon Kang, Kyung-Ah Sohn
http://arxiv.org/abs/1903.02240v1

• [cs.CV]Prostate Segmentation from 3D MRI Using a Two-Stage Model and Variable-Input Based Uncertainty Measure
Huitong Pan, Yushan Feng, Quan Chen, Craig Meyer, Xue Feng
http://arxiv.org/abs/1903.02500v1

• [cs.CV]Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks
Qin Zou, Hanwen Jiang, Qiyu Dai, Yuanhao Yue, Long Chen, Qian Wang
http://arxiv.org/abs/1903.02193v1

• [cs.CV]Robust Video Background Identification by Dominant Rigid Motion Estimation
Kaimo Lin, Nianjuan Jiang, Loong Fah Cheong, Jiangbo Lu, Xun Xu
http://arxiv.org/abs/1903.02232v1

• [cs.CV]Self-Supervised Learning of 3D Human Pose using Multi-view Geometry
Muhammed Kocabas, Salih Karagoz, Emre Akbas
http://arxiv.org/abs/1903.02330v1

• [cs.CV]Semantic Adversarial Network with Multi-scale Pyramid Attention for Video Classification
De Xie, Cheng Deng, Hao Wang, Chao Li, Dapeng Tao
http://arxiv.org/abs/1903.02155v1

• [cs.CV]Transfer feature generating networks with semantic classes structure for zero-shot learning
Guangfeng Lin, Wanjun Chen, Kaiyang Liao, Xiaobing Kang, Caixia Fan
http://arxiv.org/abs/1903.02204v1

• [cs.CV]Understanding and Visualizing Deep Visual Saliency Models
Sen He, Hamed R. Tavakoli, Ali Borji, Yang Mi, Nicolas Pugeault
http://arxiv.org/abs/1903.02501v1

• [cs.CV]Video-based surgical skill assessment using 3D convolutional neural networks
Isabel Funke, Sören Torge Mees, Jürgen Weitz, Stefanie Speidel
http://arxiv.org/abs/1903.02306v1

• [cs.CV]Visual Discourse Parsing
Arjun R Akula, Song-Chun Zhu
http://arxiv.org/abs/1903.02252v1

• [cs.DC]Exploring Mixed Integer Programming Reformulations for Virtual Machine Placement with Disk Anti-Colocation Constraints
Xiaoying Zheng, Ye Xia
http://arxiv.org/abs/1903.02139v1

• [cs.DS]Runtime Analysis of RLS and (1+1) EA for the Dynamic Weighted Vertex Cover Problem
Mojgan Pourhassan, Vahid Roostapour, Frank Neumann
http://arxiv.org/abs/1903.02195v1

• [cs.IR]Coupled CycleGAN: Unsupervised Hashing Network for Cross-Modal Retrieval
Chao Li, Cheng Deng, Lei Wang, De Xie, Xianglong Liu
http://arxiv.org/abs/1903.02149v1

• [cs.IT]Channel Decoding with Quantum Approximate Optimization Algorithm
Toshiki Matsumine, Toshiaki Koike-Akino, Ye Wang
http://arxiv.org/abs/1903.02537v1

• [cs.IT]Closed-Loop Sparse Channel Estimation for Wideband MmWave FD-MIMO Systems
Anwen Liao, Zhen Gao, Hua Wang, Sheng Chen, Mohamed-Slim Alouini, Hao Yin
http://arxiv.org/abs/1903.01921v2

• [cs.IT]Compressed CSI Feedback With Learned Measurement Matrix for mmWave Massive MIMO
Pengxia Wu, Zichuan Liu, Julian Cheng
http://arxiv.org/abs/1903.02127v1

• [cs.IT]Distributed Policy Learning Based Random Access for Diversified QoS Requirements
Zhiyuan Jiang, Sheng Zhou, Zhisheng Niu
http://arxiv.org/abs/1903.02242v1

• [cs.IT]Generalized Approximate Message Passing for Massive MIMO mmWave Channel Estimation with Laplacian Prior
Faouzi Bellili, Foad Sohrabi, Wei Yu
http://arxiv.org/abs/1903.02077v1

• [cs.IT]Generalized Fast-Convolution-based Filtered-OFDM: Techniques and Application to 5G New Radio
Juha Yli-Kaakinen, Toni Levanen, Arto Palin, Markku Renfors, Mikko Valkama
http://arxiv.org/abs/1903.02333v1

• [cs.IT]In-Band Pilot Overhead in Ultra-Reliable Low Latency Decode and Forward Relaying
Parisa Nouri, Hirley Alves, Richard Demo Souza, Matti Latva-aho
http://arxiv.org/abs/1903.02319v1

• [cs.IT]Linear Programming Bounds
Peter Boyvalenkov, Danyo Danev
http://arxiv.org/abs/1903.02255v1

• [cs.IT]On the Optimality of Ali-Niesen Decentralized Coded Caching Scheme With and Without Error Correction
Nujoom Sageer Karat, B. Sundar Rajan
http://arxiv.org/abs/1903.02408v1

• [cs.IT]Optimized Power Control for Massive MIMO with Underlaid D2D Communications
Amin Ghazanfari, Emil Björnson, Erik G. Larsson
http://arxiv.org/abs/1903.02300v1

• [cs.IT]Spectral Method for Phase Retrieval: an Expectation Propagation Perspective
Junjie Ma, Rishabh Dudeja, Ji Xu, Arian Maleki, Xiaodong Wang
http://arxiv.org/abs/1903.02505v1

• [cs.LG]A Priori Estimates of the Population Risk for Residual Networks
Weinan E, Chao Ma, Qingcan Wang
http://arxiv.org/abs/1903.02154v1

• [cs.LG]Autoregressive Convolutional Recurrent Neural Network for Univariate and Multivariate Time Series Prediction
Matteo Maggiolo, Gerasimos Spanakis
http://arxiv.org/abs/1903.02540v1

• [cs.LG]Detecting Overfitting via Adversarial Examples
Roman Werpachowski, András György, Csaba Szepesvári
http://arxiv.org/abs/1903.02380v1

• [cs.LG]Evaluation of Neural Network Uncertainty Estimation with Application to Resource-Constrained Platforms
Yukun Ding, Jinglan Liu, Jinjun Xiong, Yiyu Shi
http://arxiv.org/abs/1903.02050v1

• [cs.LG]Explaining Anomalies Detected by Autoencoders Using SHAP
Liat Antwarg, Bracha Shapira, Lior Rokach
http://arxiv.org/abs/1903.02407v1

• [cs.LG]Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey, Jan Eric Lenssen
http://arxiv.org/abs/1903.02428v1

• [cs.LG]High-Fidelity Image Generation With Fewer Labels
Mario Lucic, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly
http://arxiv.org/abs/1903.02271v1

• [cs.LG]Implicit Regularization in Over-parameterized Neural Networks
Masayoshi Kubo, Ryotaro Banno, Hidetaka Manabe, Masataka Minoji
http://arxiv.org/abs/1903.01997v1

• [cs.LG]LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood
http://arxiv.org/abs/1903.02482v1

• [cs.LG]Learning from Higher-Layer Feature Visualizations
Konstantinos Nikolaidis, Stein Kristiansen, Vera Goebel, Thomas Plagemann
http://arxiv.org/abs/1903.02313v1

• [cs.LG]On the Quantization of Cellular Neural Networks for Cyber-Physical Systems
Xiaowei Xu
http://arxiv.org/abs/1903.02048v1

• [cs.LG]PROPS: Probabilistic personalization of black-box sequence models
Michael Thomas Wojnowicz, Xuan Zhao
http://arxiv.org/abs/1903.02013v1

• [cs.LG]Positively Scale-Invariant Flatness of ReLU Neural Networks
Mingyang Yi, Qi Meng, Wei Chen, Zhi-ming Ma, Tie-Yan Liu
http://arxiv.org/abs/1903.02237v1

• [cs.LG]Relational Pooling for Graph Representations
Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, Bruno Ribeiro
http://arxiv.org/abs/1903.02541v1

• [cs.LG]Representative Task Self-selection for Flexible Clustered Lifelong Learning
Gan Sun, Yang Cong, Qianqian Wang, Bineng Zhong, Yun Fu
http://arxiv.org/abs/1903.02173v1

• [cs.LG]Safeguarded Dynamic Label Regression for Generalized Noisy Supervision
Jiangchao Yao, Ya Zhang, Ivor W. Tsang, Jun Sun
http://arxiv.org/abs/1903.02152v1

• [cs.LG]Safety-Guided Deep Reinforcement Learning via Online Gaussian Process Estimation
Jiameng Fan, Wenchao Li
http://arxiv.org/abs/1903.02526v1

• [cs.LG]Semi-Supervised Few-Shot Learning with Local and Global Consistency
Ahmed Ayyad, Nassir Navab, Mohamed Elhoseiny, Shadi Albarqouni
http://arxiv.org/abs/1903.02164v1

• [cs.LG]Using Natural Language for Reward Shaping in Reinforcement Learning
Prasoon Goyal, Scott Niekum, Raymond J. Mooney
http://arxiv.org/abs/1903.02020v1

• [cs.LG]Why Learning of Large-Scale Neural Networks Behaves Like Convex Optimization
Hui Jiang
http://arxiv.org/abs/1903.02140v1

• [cs.MM]Camera Obscurer: Generative Art for Design Inspiration
Dilpreet Singh, Nina Rajcic, Simon Colton, Jon McCormack
http://arxiv.org/abs/1903.02165v1

• [cs.NE]A Scalable Test Suite for Continuous Dynamic Multiobjective Optimisation
Shouyong Jiang, Marcus Kaiser, Shengxiang Yang, Stefanos Kollias, Natalio Krasnogor
http://arxiv.org/abs/1903.02510v1

• [cs.NE]Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search
Taimoor Akhtar, Christine A. Shoemaker
http://arxiv.org/abs/1903.02167v1

• [cs.NE]Evolutionary Cell Aided Design for Neural Network Architectures
Philip Colangelo, Oren Segal, Alexander Speicher, Martin Margala
http://arxiv.org/abs/1903.02130v1

• [cs.NE]SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks with at most one Spike per Neuron
Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, Timothée Masquelier
http://arxiv.org/abs/1903.02440v1

• [cs.NE]Widely Linear Complex-valued Autoencoder: Dealing with Noncircularity in Generative-Discriminative Models
Zeyang Yu, Shengxi Li, Danilo Mandic
http://arxiv.org/abs/1903.02014v1

• [cs.NI]WiFi-Based Indoor Localization via Multi-Band Splicing and Phase Retrieval
Mahdi Barzegar Khalilsarai, Stelios Stefanatos, Gerhard Wunder, Giuseppe Caire
http://arxiv.org/abs/1903.02367v1

• [cs.RO]Combining Optimal Control and Learning for Visual Navigation in Novel Environments
Somil Bansal, Varun Tolani, Saurabh Gupta, Jitendra Malik, Claire Tomlin
http://arxiv.org/abs/1903.02531v1

• [cs.RO]Development of SAM: cable-Suspended Aerial Manipulator
Yuri S. Sarkisov, Min Jun Kim, Davide Bicego, Dzmitry Tsetserukou, Christian Ott, Antonio Franchi, Konstantin Kondak
http://arxiv.org/abs/1903.02426v1

• [cs.RO]FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots
Luxin Han, Fei Gao, Boyu Zhou, Shaojie Shen
http://arxiv.org/abs/1903.02144v1

• [cs.RO]GQ-STN: Optimizing One-Shot Grasp Detection based on Robustness Classifier
Alexandre Gariépy, Jean-Christophe Ruel, Brahim Chaib-draa, Philippe Giguère
http://arxiv.org/abs/1903.02489v1

• [cs.RO]Lambda-Field: A Continuous Counterpart of the Bayesian Occupancy Grid for Risk Assessment
Johann Laconte, Christophe Debain, Roland Chapuis, François Pomerleau, Romuald Aufrère
http://arxiv.org/abs/1903.02285v1

• [cs.RO]Learning a Lattice Planner Control Set for Autonomous Vehicles
Ryan De Iaco, Stephen L. Smith, Krzysztof Czarnecki
http://arxiv.org/abs/1903.02044v1

• [cs.RO]Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization
Adarsh Sehgal, Ashutosh Singandhupe, Hung Manh La, Alireza Tavakkoli, Sushil J. Louis
http://arxiv.org/abs/1903.02046v1

• [cs.RO]Multiple configurations for puncturing robot positioning
Omar Abdelaziz, Minzhou Luo, Guanwu Jiang, Saixuan Chen
http://arxiv.org/abs/1903.02281v1

• [cs.RO]Open-Sourced Reinforcement Learning Environments for Surgical Robotics
Florian Richter, Ryan K. Orosco, Michael C. Yip
http://arxiv.org/abs/1903.02090v1

• [cs.RO]Optimal Dexterity for a Snake-like Surgical Manipulator using Patient-specific Task-space Constraints in a Computational Design Algorithm
Andrew Razjigaev, Ajay K. Pandey, Jonathan Roberts, Liao Wu
http://arxiv.org/abs/1903.02217v1

• [cs.RO]Pose Estimation of Vehicles Over Uneven Terrain
Yingchong Ma, Zvi Shiller
http://arxiv.org/abs/1903.02052v1

• [cs.RO]RINS-W: Robust Inertial Navigation System on Wheels
Martin Brossard, Axel Barrau, Silvere Bonnabel
http://arxiv.org/abs/1903.02210v1

• [cs.RO]Spiking Neural Network on Neuromorphic Hardware for Energy-Efficient Unidimensional SLAM
Guangzhi Tang, Arpit Shah, Konstantinos P. Michmizos
http://arxiv.org/abs/1903.02504v1

• [cs.RO]The AI Driving Olympics at NeurIPS 2018
Julian Zilly, Jacopo Tani, Breandan Considine, Bhairav Mehta, Andrea F. Daniele, Manfred Diaz, Gianmarco Bernasconi, Claudio Ruch, Jan Hakenberg, Florian Golemo, A. Kirsten Bowser, Matthew R. Walter, Ruslan Hristov, Sunil Mallya, Emilio Frazzoli, Andrea Censi, Liam Paull
http://arxiv.org/abs/1903.02503v1

• [cs.RO]Towards Better Human Robot Collaboration with Robust Plan Recognition and Trajectory Prediction
Yujiao Cheng, Liting Sun, Masayoshi Tomizuka
http://arxiv.org/abs/1903.02199v1

• [cs.RO]Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
Tobias Klamt, Sven Behnke
http://arxiv.org/abs/1903.02308v1

• [cs.RO]Training in Task Space to Speed Up and Guide Reinforcement Learning
Guillaume Bellegarda, Katie Byl
http://arxiv.org/abs/1903.02219v1

• [cs.RO]Trends, Challenges and Adopted Strategies in RoboCup@Home
Mauricio Matamoros, Viktor Seib, Dietrich Paulus
http://arxiv.org/abs/1903.02516v1

• [cs.RO]Uncertainty-Aware Imitation Learning using Kernelized Movement Primitives
João Silvério, Yanlong Huang, Fares J. Abu-Dakka, Leonel Rozo, Darwin G. Caldwell
http://arxiv.org/abs/1903.02114v1

• [cs.RO]Viewpoint Optimization for Autonomous Strawberry Harvesting with Deep Reinforcement Learning
Jonathon Sather
http://arxiv.org/abs/1903.02074v1

• [cs.SI]Gaps in Information Access in Social Networks
Benjamin Fish, Ashkan Bashardoust, danah boyd, Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian
http://arxiv.org/abs/1903.02047v1

• [cs.SI]Graph Neural Networks for User Identity Linkage
Wen Zhang, Kai Shu, Huan Liu, Yalin Wang
http://arxiv.org/abs/1903.02174v1

• [cs.SI]Signed Link Prediction with Sparse Data: The Role of Personality Information
Ghazaleh Beigi, Suhas Ranganath, Huan Liu
http://arxiv.org/abs/1903.02125v1

• [cs.SY]Nonlinear input design as optimal control of a Hamiltonian system
Jack Umenberger, Thomas B. Schön
http://arxiv.org/abs/1903.02250v1

• [eess.SP]Algorithms for Piecewise Constant Signal Approximations
Leif Bergerhoff, Joachim Weickert, Yehuda Dar
http://arxiv.org/abs/1903.01320v2

• [eess.SP]DeepTurbo: Deep Turbo Decoder
Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
http://arxiv.org/abs/1903.02295v1

• [eess.SP]Energy-Efficient Edge-Facilitated Wireless Collaborative Computing using Map-Reduce
Antoine Paris, Hamed Mirghasemi, Ivan Stupia, Luc Vandendorpe
http://arxiv.org/abs/1903.02294v1

• [eess.SP]Learning How to Demodulate from Few Pilots via Meta-Learning
Sangwoo Park, Hyeryung Jang, Osvaldo Simeone, Joonhyuk Kang
http://arxiv.org/abs/1903.02184v1

• [eess.SP]SleepEEGNet: Automated Sleep Stage Scoring with Sequence to Sequence Deep Learning Approach
Sajad Mousavi, Fatemeh Afghah, U. Rajendra Acharya
http://arxiv.org/abs/1903.02108v1

• [gr-qc]Deep Learning at Scale for Gravitational Wave Parameter Estimation of Binary Black Hole Mergers
Hongyu Shen, E. A. Huerta, Zhizhen Zhao
http://arxiv.org/abs/1903.01998v1

• [math.CO]Planar Polynomials arising from Linearized polynomials
Daniele Bartoli, Matteo Bonini
http://arxiv.org/abs/1903.02112v1

• [math.HO]A data analysis of women's trails among ICM speakers
Helena Mihaljević, Marie-Françoise Roy
http://arxiv.org/abs/1903.02543v1

• [math.OC]Convergence of gradient descent-ascent analyzed as a Newtonian dynamical system with dissipation
H. Sebastian Seung
http://arxiv.org/abs/1903.02536v1

• [math.PR]Generalized k-variations and Hurst parameter estimation for the fractional wave equation via Malliavin calculus
Radomyra Shevchenko, Meryem Slaoui, Ciprian A. Tudor
http://arxiv.org/abs/1903.02369v1

• [math.PR]Hurst index estimation in stochastic differential equations driven by fractional Brownian motion
Jan Gairing, Peter Imkeller, Radomyra Shevchenko, Ciprian A. Tudor
http://arxiv.org/abs/1903.02364v1

• [math.PR]Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean
Radomyra Shevchenko, Ciprian A. Tudor
http://arxiv.org/abs/1903.02376v1

• [math.ST]A Prediction Tournament Paradox
David Aldous
http://arxiv.org/abs/1903.02131v1

• [math.ST]Hoeffding-Type and Bernstein-Type Inequalities for Right Censored Data
Yair Goldberg
http://arxiv.org/abs/1903.01991v1

• [physics.soc-ph]Evolutionary Dynamics of Cultural Memes and Application to Massive Movie Data
Seungkyu Shin, Juyong Park
http://arxiv.org/abs/1903.02197v1

• [q-bio.QM]An Efficient Production Process for Extracting Salivary Glands from Mosquitoes
Mariah Schrum, Amanda Canezin, Sumana Chakravarty, Michelle Laskowski, Suat Comert, Yunuscan Sevimli, Gregory S. Chirikjian, Stephen L. Hoffman, Russell H. Taylor
http://arxiv.org/abs/1903.02532v1

• [stat.AP]A Sketch of Some Stochastic Models and Analysis Methods for Fiber Bundle Failure under Increasing Tensile Load
Shuang Li, James Lynch
http://arxiv.org/abs/1903.02546v1

• [stat.AP]A heuristic approach for lactate threshold estimation for training decision-making: An accessible and easy to use solution for recreational runners
U. Etxegarai, E. Portillo, J. Irazusta, L. A. Koefoed, N. Kasabov
http://arxiv.org/abs/1903.02318v1

• [stat.AP]Blinded continuous information monitoring of recurrent event endpoints with time trends in clinical trials
Tobias Mütze, Susanna Salem, Norbert Benda, Heinz Schmidli, Tim Friede
http://arxiv.org/abs/1903.02538v1

• [stat.AP]Graph-aware linear mixed effects models for brain connectivity networks
Yura Kim, Elizaveta Levina
http://arxiv.org/abs/1903.02129v1

• [stat.CO]Causal Discovery Toolbox: Uncover causal relationships in Python
Diviyan Kalainathan, Olivier Goudet
http://arxiv.org/abs/1903.02278v1

• [stat.ME]Economic variable selection
Steve N. MacEachern, Koji Miyawaki
http://arxiv.org/abs/1903.02136v1

• [stat.ME]Emulating computer models with step-discontinuous outputs using Gaussian processes
Hossein Mohammadi, Peter Challenor, Marc Goodfellow, Daniel Williamson
http://arxiv.org/abs/1903.02071v1

• [stat.ME]Threshold Selection in Univariate Extreme Value Analysis
Laura Fee Schneider, Andrea Krajina, Tatyana Krivobokova
http://arxiv.org/abs/1903.02517v1

• [stat.ML]Limitations of Pinned AUC for Measuring Unintended Bias
Daniel Borkan, Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, Lucy Vasserman
http://arxiv.org/abs/1903.02088v1

• [stat.ML]Neural Empirical Bayes
Saeed Saremi, Aapo Hyvarinen
http://arxiv.org/abs/1903.02334v1

• [stat.ML]Orthogonal Structure Search for Efficient Causal Discovery from Observational Data
Anant Raj, Luigi Gresele, Michel Besserve, Bernhard Schölkopf, Stefan Bauer
http://arxiv.org/abs/1903.02456v1

• [stat.ML]Size of Interventional Markov Equivalence Classes in Random DAG Models
Dmitriy Katz, Karthikeyan Shanmugam, Chandler Squires, Caroline Uhler
http://arxiv.org/abs/1903.02054v1

相关文章

网友评论

      本文标题:今日学术视野(2019.3.8)

      本文链接:https://www.haomeiwen.com/subject/jhqlpqtx.html