1.使用reduceBykey
需求:读取一个存放word的文件读取这个文件使用reduceByKey算子进行wordcount演示
1.val wordrdd=sc.textFile("file:/opt/module/datas/1.txt")
2.val words=wordrdd.flatMap(_.split(" "))
3.words.map((_,1)).reduceByKey(_+_).collect
效果图:
2.使用groupbykey
1.val wordrdd=sc.textFile("file:/opt/module/datas/1.txt")
2.val words=wordrdd.flatMap(_.split(" "))
3.words.groupBy(x=>x).map(t=>(t._1,t._2.toList.size)).collect
效果图:
3.使用aggregateByKey
1.val wordrdd=sc.textFile("file:/opt/module/datas/1.txt")
2.val words=wordrdd.flatMap(_.split(" "))
3.val wordOne=words.map((_,1))
4.wordOne.aggregateByKey(0)(_+_,_+_).collect
效果图:
4.使用foldByKey
1.val wordrdd=sc.textFile("file:/opt/module/datas/1.txt")
2.val words=wordrdd.flatMap(_.split(" "))
3.val wordOne=words.map((_,1))
4.wordOne.foldByKey(0)(_+_).collect
效果图:
4.使用combineByKey
1.val wordrdd=sc.textFile("file:/opt/module/datas/1.txt")
2.val words=wordrdd.flatMap(_.split(" "))
3.val wordOne=words.map((_,1))
4.wordOne.combineByKey(x=>x,(x:Int,y:Int)=>x+y,(x:Int,y:Int)=>x+y).collect
效果图:
网友评论