美文网首页Python
Python数据验证库(二)validator

Python数据验证库(二)validator

作者: kaley_ma | 来源:发表于2017-07-28 15:37 被阅读110次

validator.py是一个数据验证工具,确保数据符合一定的规则。一个validation是一个字典,对于字典中的每一个键,包含一个规则列表。

先看两个简单的例子,就可以大致了解validator的用法啦,也可以从中体会到validator与validators的不同之处。

from validator import Required, Not, Truthy, Blank, Range, Equals, In, validate

# let's say that my dictionary needs to meet the following rules...
rules = {
    "foo": [Required, Equals(123)], # foo must be exactly equal to 123
    "bar": [Required, Truthy()],    # bar must be equivalent to True
    "baz": [In(["spam", "eggs", "bacon"])], # baz must be one of these options
    "qux": [Not(Range(1, 100))] # qux must not be a number between 1 and 100 inclusive
}

# then this following dict would pass:
passes = {
    "foo": 123,
    "bar": True, # or a non-empty string, or a non-zero int, etc...
    "baz": "spam",
    "qux": 101
}
>>> validate(rules, passes)
ValidationResult(valid=True, errors={})

# but this one would fail
fails = {
    "foo": 321,
    "bar": False, # or 0, or [], or an empty string, etc...
    "baz": "barf",
    "qux": 99
}
>>> validate(rules, fails)
ValidationResult(valid=False, errors={'baz': ["must be one of ['spam', 'eggs', 'bacon']"], 'foo': ['must be equal to 123'], 'bar': ['must be True-equivalent value'], 'qux': ['must not fall between 1 and 100']})

一、安装

1、稳定版本安装

$ pip install validator.py

2、最新版本

可以从 http://github.com/mansam/validator.py 获得最新版本

二、开启验证之旅

我们可以自定义验证器,先上例子:

dictionary = {     
    "foo": "bar"
} 
validation = {     
    "foo": [lambda x: x == "bar"] 
}  
>>> validate(validation, dictionary) 
ValidationResult(valid=True, errors={})
 # Success!

其中,validation是我们的验证规则(检查点),dictionary是要检查的数据,将validation与dictionary作为函数validate的参数,即可获得验证结果。我们可以根据实际需要定义更为复杂的验证规则。

三、几个可以直接使用的验证器

1、Equals

值匹配验证

passes = {
    "foo": "bar"
}
failures = {
    "foo": "barrr"
}
validation = {
    "foo": [Equals("bar")]
}

>>> validate(validation, passes)
ValidationResult(valid=True, errors={})
# Success!

>>> validate(validation, failures)
ValidationResult(valid=False, errors={'foo': ["must be equal to 'bar'"]})
# Failure!
2、Required

默认情况下,key是可选择的。如果一个keyvalidation中,但是不在dictionary中,那么在数据验证时,默认跳过。如果想要确保某个key存在,可以用Required。

dictionary1 = {
    "foo": "bar"
}

dictionary2 = {
}

validation = {
    "foo": [Required, Equals("bar")]
}

>>>  validate(validation, dictionary1)
ValidationResult(valid=True, errors={})

>>> validate(validation, dictionary2)
ValidationResult(valid=False, errors={'foo': 'must be present'})
3、Truthy

验证dictionary中的值是否是python中的真值,python中的真值包括 True, 非0整数,非空列表,非空字符串等。

dictionary = {
    "foo": 1
}
validation = {
    "foo": [Required, Truthy()]
}

>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})
4、Range

验证dictionary中的值是否在Range范围内。

dictionary = {
    "foo": 10
}
failure = {
    "foo": 12
}
validation = {
    "foo": [Required, Range(1, 11)]
}
>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})

>>> validate(validation, failure)
ValidationResult(valid=False, errors={'foo': ['must fall between 1 and 11']})
5、Pattern

验证数据格式。

dictionary = {
    "foo": "30%"
}
failure = {
    "foo": "99.0"
}
validation = {
    "foo": [Required, Pattern("\d\d\%")]
}

>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})
# Success!
>>> validate(validation, failure)
ValidationResult(valid=False, errors={'foo': ['must match regex pattern \\d\\d\\
%']})
# failure
6、In

检查dictionary中的值是否在一个集合中

dictionary = {
    "foo": "spam"
}
failure = {
    "foo": "beans"
}
validation = {
    "foo": [Required, In(["spam", "eggs", "bacon"])]
}
>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})

>>> validate(validation, failure)
ValidationResult(valid=False, errors={'foo': ['must match regex pattern \\d\\d\\
%']})
7、Not

Not可以放在其他验证器前面,表示相反的验证内容。

dictionary = {
    "foo": "beans"
}
validation = {
    "foo": [Required, Not(In(["spam", "eggs", "bacon"]))]
}

>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})
dictionary = {
    "foo": 10
}
validation = {
    "foo": [Required, Not(Range(1, 11))]
}
>>> validate(validation, dictionary)
ValidationResult(valid=False, errors={'foo': ['must not fall between 1 and 11']})
8、InstanceOf

检查dictionary中的值是否是一个基类或它的子类的实例。

dictionary = {
    "foo": u"i'm_a_unicode_string"
}
failure = {
    "foo": object
}
validation = {
    "foo": [Required, InstanceOf(basestring)]
}
>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})

>>> validate(validation, failure)
ValidationResult(valid=False, errors={'foo': ['must be an instance of str or its
 subclasses']})
9、SubclassOf

检查dictionary中的值是否是一个基类的子类,特别强调,这里说的是基类的子类,而不是类的实例。

dictionary = {
    "foo": unicode
}
failure = {
    "foo": "bar"
}
validation = {
    "foo": [Required, SubclassOf(basestring)]
}
>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})

>>> validate(validation, failure)
ValidationResult(valid=False, errors={'foo': ['must be a subclass of basestring']})
10、Length

检查dictionary中的value至少有minimum 个元素,至多有maximum个元素,其中第一个参数为minimum ,第二个参数maximum可选。

dictionary = {
    "foo": [1, 2, 3, 4, 5]
}
validation = {
    "foo": [Length(0, maximum=5)]
}
>>> validate(validation, dictionary)
ValidationResult(valid=True, errors={})
dictionary = {
    "foo": [1, 2, 3, 4, 5]
}
validation = {
    "foo": [Length(6, maximum=10)]
}
>>> validate(validation, dictionary)
ValidationResult(valid=False, errors={'foo': ['must be between 6 and 10 elements in length']})

四、条件验证

在某些情况下,我们可能需要先验证某项数据,在这项数据验证通过时再进行下一步的验证,这时,我们可以使用条件验证,If(validator, Then(validation))

pet = {
    "name": "whiskers",
    "type": "cat"
}
cat_name_rules = {
    "name": [In(["whiskers", "fuzzy", "tiger"])]
}
dog_name_rules = {
    "name": [In(["spot", "ace", "bandit"])]
}
validation = {
    "type": [
        If(Equals("cat"), Then(cat_name_rules)),
        If(Equals("dog"), Then(dog_name_rules))
    ]
}

>>> validate(validation, pet)
ValidationResult(valid=True, errors={})

五、嵌套验证

有时我们需要验证的数据不是简单的结构,而是一个嵌套结构。上栗子:

validator = {
    "foo": [Required, Equals(1)],
    "bar": [Required, {
            "baz": [Required, Equals(2)],
            "qux": [Required, {
                "quux": [Required, Equals(3)]
            }]
        }
    ]
}
test_case = {
    "foo": 1,
    "bar": {
        "baz": 2,
        "qux": {
            "quux": 3
        }
    }
}
>>> validate(validator, test_case)
ValidationResult(valid=True, errors={})

上一篇: Python数据验证库(一) validators
http://www.jianshu.com/p/2babed54b496

下一篇:Python数据验证库(三)voluptuous
http://www.jianshu.com/p/0a5047a04ffd

相关文章

网友评论

    本文标题:Python数据验证库(二)validator

    本文链接:https://www.haomeiwen.com/subject/jjltlxtx.html