简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。
k-近邻算法
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。
简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。
k近邻算法的一般流程
- 收集数据:可以使用任何方法。
- 准备数据:距离计算所需要的数值,最好是结构化的数据格式。
- 分析数据:可以使用任何方法。
- 训练算法:此步骤不适用于k近邻算法。
- 测试算法:计算错误率。
- 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k近邻算法判定输入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。
网友评论