美文网首页
[YOLOv7]基于YOLO&Deepsort的人流量统计系统(

[YOLOv7]基于YOLO&Deepsort的人流量统计系统(

作者: 群山科技 | 来源:发表于2022-09-02 11:07 被阅读0次

    1.图片识别

    2.png 3.png

    2.视频识别

    [YOLOv7]基于YOLO&Deepsort的人流量统计系统(源码&部署教程)_哔哩哔哩_bilibili

    3.Deepsort目标追踪

    (1)获取原始视频帧
    (2)利用目标检测器对视频帧中的目标进行检测
    (3)将检测到的目标的框中的特征提取出来,该特征包括表观特征(方便特征对比避免ID switch)和运动特征(运动特征方
    便卡尔曼滤波对其进行预测)
    (4)计算前后两帧目标之前的匹配程度(利用匈牙利算法和级联匹配),为每个追踪到的目标分配ID。
    Deepsort的前身是sort算法,sort算法的核心是卡尔曼滤波算法和匈牙利算法。

        卡尔曼滤波算法作用:该算法的主要作用就是当前的一系列运动变量去预测下一时刻的运动变量,但是第一次的检测结果用来初始化卡尔曼滤波的运动变量。
    
        匈牙利算法的作用:简单来讲就是解决分配问题,就是把一群检测框和卡尔曼预测的框做分配,让卡尔曼预测的框找到和自己最匹配的检测框,达到追踪的效果。
    

    sort工作流程如下图所示:

    4.png

    Detections是通过目标检测到的框框。Tracks是轨迹信息。

    整个算法的工作流程如下:

    (1)将第一帧检测到的结果创建其对应的Tracks。将卡尔曼滤波的运动变量初始化,通过卡尔曼滤波预测其对应的框框。

    (2)将该帧目标检测的框框和上一帧通过Tracks预测的框框一一进行IOU匹配,再通过IOU匹配的结果计算其代价矩阵(cost matrix,其计算方式是1-IOU)。

    (3)将(2)中得到的所有的代价矩阵作为匈牙利算法的输入,得到线性的匹配的结果,这时候我们得到的结果有三种,第一种是Tracks失配(Unmatched Tracks),我们直接将失配的Tracks删除;第二种是Detections失配(Unmatched Detections),我们将这样的Detections初始化为一个新的Tracks(new Tracks);第三种是检测框和预测的框框配对成功,这说明我们前一帧和后一帧追踪成功,将其对应的Detections通过卡尔曼滤波更新其对应的Tracks变量。

    (4)反复循环(2)-(3)步骤,直到视频帧结束。

    Deepsort算法流程

    由于sort算法还是比较粗糙的追踪算法,当物体发生遮挡的时候,特别容易丢失自己的ID。而Deepsort算法在sort算法的基础上增加了级联匹配(Matching Cascade)和新轨迹的确认(confirmed)。Tracks分为确认态(confirmed),和不确认态(unconfirmed),新产生的Tracks是不确认态的;不确认态的Tracks必须要和Detections连续匹配一定的次数(默认是3)才可以转化成确认态。确认态的Tracks必须和Detections连续失配一定次数(默认30次),才会被删除。
    Deepsort算法的工作流程如下图所示:


    5.png

    整个算法的工作流程如下:

    (1)将第一帧次检测到的结果创建其对应的Tracks。将卡尔曼滤波的运动变量初始化,通过卡尔曼滤波预测其对应的框框。这时候的Tracks一定是unconfirmed的。

    (2)将该帧目标检测的框框和第上一帧通过Tracks预测的框框一一进行IOU匹配,再通过IOU匹配的结果计算其代价矩阵(cost matrix,其计算方式是1-IOU)。

    (3)将(2)中得到的所有的代价矩阵作为匈牙利算法的输入,得到线性的匹配的结果,这时候我们得到的结果有三种,第一种是Tracks失配(Unmatched Tracks),我们直接将失配的Tracks(因为这个Tracks是不确定态了,如果是确定态的话则要连续达到一定的次数(默认30次)才可以删除)删除;第二种是Detections失配(Unmatched Detections),我们将这样的Detections初始化为一个新的Tracks(new Tracks);第三种是检测框和预测的框框配对成功,这说明我们前一帧和后一帧追踪成功,将其对应的Detections通过卡尔曼滤波更新其对应的Tracks变量。

    (4)反复循环(2)-(3)步骤,直到出现确认态(confirmed)的Tracks或者视频帧结束。

    (5)通过卡尔曼滤波预测其确认态的Tracks和不确认态的Tracks对应的框框。将确认态的Tracks的框框和是Detections进行级联匹配(之前每次只要Tracks匹配上都会保存Detections其的外观特征和运动信息,默认保存前100帧,利用外观特征和运动信息和Detections进行级联匹配,这么做是因为确认态(confirmed)的Tracks和Detections匹配的可能性更大)。

    (6)进行级联匹配后有三种可能的结果。第一种,Tracks匹配,这样的Tracks通过卡尔曼滤波更新其对应的Tracks变量。第二第三种是Detections和Tracks失配,这时将之前的不确认状态的Tracks和失配的Tracks一起和Unmatched Detections一一进行IOU匹配,再通过IOU匹配的结果计算其代价矩阵(cost matrix,其计算方式是1-IOU)。

    (7)将(6)中得到的所有的代价矩阵作为匈牙利算法的输入,得到线性的匹配的结果,这时候我们得到的结果有三种,第一种是Tracks失配(Unmatched Tracks),我们直接将失配的Tracks(因为这个Tracks是不确定态了,如果是确定态的话则要连续达到一定的次数(默认30次)才可以删除)删除;第二种是Detections失配(Unmatched Detections),我们将这样的Detections初始化为一个新的Tracks(new Tracks);第三种是检测框和预测的框框配对成功,这说明我们前一帧和后一帧追踪成功,将其对应的Detections通过卡尔曼滤波更新其对应的Tracks变量。

    (8)反复循环(5)-(7)步骤,直到视频帧结束。

    4.准备YOLOv7格式数据集

    如果不懂yolo格式数据集是什么样子的,建议先学习一下。大部分CVer都会推荐用labelImg进行数据的标注,我也不例外,推荐大家用labelImg进行数据标注。不过这里我不再详细介绍如何使用labelImg,网上有很多的教程。同时,标注数据需要用到图形交互界面,远程服务器就不太方便了,因此建议在本地电脑上标注好后再上传到服务器上。

    这里假设我们已经得到标注好的yolo格式数据集,那么这个数据集将会按照如下的格式进行存放。


    n.png

    不过在这里面,train_list.txt和val_list.txt是后来我们要自己生成的,而不是labelImg生成的;其他的则是labelImg生成的。

    接下来,就是生成 train_list.txt和val_list.txt。train_list.txt存放了所有训练图片的路径,val_list.txt则是存放了所有验证图片的路径,如下图所示,一行代表一个图片的路径。这两个文件的生成写个循环就可以了,不算难。

    5.修改配置文件

    总共有两个文件需要配置,一个是/yolov7/cfg/training/yolov7.yaml,这个文件是有关模型的配置文件;一个是/yolov7/data/coco.yaml,这个是数据集的配置文件。

    第一步,复制yolov7.yaml文件到相同的路径下,然后重命名,我们重命名为yolov7-Helmet.yaml。

    第二步,打开yolov7-Helmet.yaml文件,进行如下图所示的修改,这里修改的地方只有一处,就是把nc修改为我们数据集的目标总数即可。然后保存。

    b.png

    第三步,复制coco.yaml文件到相同的路径下,然后重命名,我们命名为Helmet.yaml。

    第四步,打开Helmet.yaml文件,进行如下所示的修改,需要修改的地方为5处。

    第一处:把代码自动下载COCO数据集的命令注释掉,以防代码自动下载数据集占用内存;第二处:修改train的位置为train_list.txt的路径;第三处:修改val的位置为val_list.txt的路径;第四处:修改nc为数据集目标总数;第五处:修改names为数据集所有目标的名称。然后保存。

    k.png

    6.训练代码

    import argparse
    import logging
    import math
    import os
    import random
    import time
    from copy import deepcopy
    from pathlib import Path
    from threading import Thread
    
    import numpy as np
    import torch.distributed as dist
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    import torch.optim.lr_scheduler as lr_scheduler
    import torch.utils.data
    import yaml
    from torch.cuda import amp
    from torch.nn.parallel import DistributedDataParallel as DDP
    from torch.utils.tensorboard import SummaryWriter
    from tqdm import tqdm
    
    import test  # import test.py to get mAP after each epoch
    from models.experimental import attempt_load
    from models.yolo import Model
    from utils.autoanchor import check_anchors
    from utils.datasets import create_dataloader
    from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
        fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
        check_requirements, print_mutation, set_logging, one_cycle, colorstr
    from utils.google_utils import attempt_download
    from utils.loss import ComputeLoss, ComputeLossOTA
    from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
    from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
    from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
    
    logger = logging.getLogger(__name__)
    
    
    def train(hyp, opt, device, tb_writer=None):
        logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
        save_dir, epochs, batch_size, total_batch_size, weights, rank, freeze = \
            Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, opt.freeze
    
        # Directories
        wdir = save_dir / 'weights'
        wdir.mkdir(parents=True, exist_ok=True)  # make dir
        last = wdir / 'last.pt'
        best = wdir / 'best.pt'
        results_file = save_dir / 'results.txt'
    
        # Save run settings
        with open(save_dir / 'hyp.yaml', 'w') as f:
            yaml.dump(hyp, f, sort_keys=False)
        with open(save_dir / 'opt.yaml', 'w') as f:
            yaml.dump(vars(opt), f, sort_keys=False)
    
        # Configure
        plots = not opt.evolve  # create plots
        cuda = device.type != 'cpu'
        init_seeds(2 + rank)
        with open(opt.data) as f:
            data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
        is_coco = opt.data.endswith('coco.yaml')
    
        # Logging- Doing this before checking the dataset. Might update data_dict
        loggers = {'wandb': None}  # loggers dict
        if rank in [-1, 0]:
            opt.hyp = hyp  # add hyperparameters
            run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
            wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
            loggers['wandb'] = wandb_logger.wandb
            data_dict = wandb_logger.data_dict
            if wandb_logger.wandb:
                weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming
    
        nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
        names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
        assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check
    
        # Model
        pretrained = weights.endswith('.pt')
        if pretrained:
            with torch_distributed_zero_first(rank):
                attempt_download(weights)  # download if not found locally
            ckpt = torch.load(weights, map_location=device)  # load checkpoint
            model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
            exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else []  # exclude keys
            state_dict = ckpt['model'].float().state_dict()  # to FP32
            state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
            model.load_state_dict(state_dict, strict=False)  # load
            logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
        else:
            model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        with torch_distributed_zero_first(rank):
            check_dataset(data_dict)  # check
        train_path = data_dict['train']
        test_path = data_dict['val']
    
        # Freeze
        freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # parameter names to freeze (full or partial)
        for k, v in model.named_parameters():
            v.requires_grad = True  # train all layers
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False
    
        # Optimizer
        nbs = 64  # nominal batch size
        accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
        hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
        logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
    
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in model.named_modules():
            if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
                pg2.append(v.bias)  # biases
            if isinstance(v, nn.BatchNorm2d):
                pg0.append(v.weight)  # no decay
            elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
                pg1.append(v.weight)  # apply decay
            if hasattr(v, 'im'):
                if hasattr(v.im, 'implicit'):           
                    pg0.append(v.im.implicit)
                else:
                    for iv in v.im:
                        pg0.append(iv.implicit)
            if hasattr(v, 'imc'):
                if hasattr(v.imc, 'implicit'):           
                    pg0.append(v.imc.implicit)
                else:
                    for iv in v.imc:
                        pg0.append(iv.implicit)
            if hasattr(v, 'imb'):
                if hasattr(v.imb, 'implicit'):           
                    pg0.append(v.imb.implicit)
                else:
                    for iv in v.imb:
                        pg0.append(iv.implicit)
            if hasattr(v, 'imo'):
                if hasattr(v.imo, 'implicit'):           
                    pg0.append(v.imo.implicit)
                else:
                    for iv in v.imo:
                        pg0.append(iv.implicit)
            if hasattr(v, 'ia'):
                if hasattr(v.ia, 'implicit'):           
                    pg0.append(v.ia.implicit)
                else:
                    for iv in v.ia:
                        pg0.append(iv.implicit)
            if hasattr(v, 'attn'):
                if hasattr(v.attn, 'logit_scale'):   
                    pg0.append(v.attn.logit_scale)
                if hasattr(v.attn, 'q_bias'):   
                    pg0.append(v.attn.q_bias)
                if hasattr(v.attn, 'v_bias'):  
                    pg0.append(v.attn.v_bias)
                if hasattr(v.attn, 'relative_position_bias_table'):  
                    pg0.append(v.attn.relative_position_bias_table)
            if hasattr(v, 'rbr_dense'):
                if hasattr(v.rbr_dense, 'weight_rbr_origin'):  
                    pg0.append(v.rbr_dense.weight_rbr_origin)
                if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'): 
                    pg0.append(v.rbr_dense.weight_rbr_avg_conv)
                if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):  
                    pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
                if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'): 
                    pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
                if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):   
                    pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
                if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):   
                    pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
                if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):   
                    pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
                if hasattr(v.rbr_dense, 'vector'):   
                    pg0.append(v.rbr_dense.vector)
    
        if opt.adam:
            optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
        else:
            optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
    
        optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
        optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2
    
        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
        if opt.linear_lr:
            lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
        else:
            lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
        # plot_lr_scheduler(optimizer, scheduler, epochs)
    
        # EMA
        ema = ModelEMA(model) if rank in [-1, 0] else None
    
        # Resume
        start_epoch, best_fitness = 0, 0.0
        if pretrained:
            # Optimizer
            if ckpt['optimizer'] is not None:
                optimizer.load_state_dict(ckpt['optimizer'])
                best_fitness = ckpt['best_fitness']
    
            # EMA
            if ema and ckpt.get('ema'):
                ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
                ema.updates = ckpt['updates']
    
            # Results
            if ckpt.get('training_results') is not None:
                results_file.write_text(ckpt['training_results'])  # write results.txt
    
            # Epochs
            start_epoch = ckpt['epoch'] + 1
            if opt.resume:
                assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
            if epochs < start_epoch:
                logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                            (weights, ckpt['epoch'], epochs))
                epochs += ckpt['epoch']  # finetune additional epochs
    
            del ckpt, state_dict
    
        # Image sizes
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
        imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples
    
        # DP mode
        if cuda and rank == -1 and torch.cuda.device_count() > 1:
            model = torch.nn.DataParallel(model)
    
        # SyncBatchNorm
        if opt.sync_bn and cuda and rank != -1:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
            logger.info('Using SyncBatchNorm()')
    
        # Trainloader
        dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                                hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                                world_size=opt.world_size, workers=opt.workers,
                                                image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
        mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
        nb = len(dataloader)  # number of batches
        assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
    
        # Process 0
        if rank in [-1, 0]:
            testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt,  # testloader
                                           hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                           world_size=opt.world_size, workers=opt.workers,
                                           pad=0.5, prefix=colorstr('val: '))[0]
    
            if not opt.resume:
                labels = np.concatenate(dataset.labels, 0)
                c = torch.tensor(labels[:, 0])  # classes
                # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
                # model._initialize_biases(cf.to(device))
                if plots:
                    #plot_labels(labels, names, save_dir, loggers)
                    if tb_writer:
                        tb_writer.add_histogram('classes', c, 0)
    
                # Anchors
                if not opt.noautoanchor:
                    check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
                model.half().float()  # pre-reduce anchor precision
    
        # DDP mode
        if cuda and rank != -1:
            model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
                        # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
                        find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
    
        # Model parameters
        hyp['box'] *= 3. / nl  # scale to layers
        hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
        hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
        hyp['label_smoothing'] = opt.label_smoothing
        model.nc = nc  # attach number of classes to model
        model.hyp = hyp  # attach hyperparameters to model
        model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
        model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
        model.names = names
    
        # Start training
        t0 = time.time()
        nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
        # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
        maps = np.zeros(nc)  # mAP per class
        results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
        scheduler.last_epoch = start_epoch - 1  # do not move
        scaler = amp.GradScaler(enabled=cuda)
        compute_loss_ota = ComputeLossOTA(model)  # init loss class
        compute_loss = ComputeLoss(model)  # init loss class
        logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                    f'Using {dataloader.num_workers} dataloader workers\n'
                    f'Logging results to {save_dir}\n'
                    f'Starting training for {epochs} epochs...')
        torch.save(model, wdir / 'init.pt')
        for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
            model.train()
    
            # Update image weights (optional)
            if opt.image_weights:
                # Generate indices
                if rank in [-1, 0]:
                    cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                    iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                    dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
                # Broadcast if DDP
                if rank != -1:
                    indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                    dist.broadcast(indices, 0)
                    if rank != 0:
                        dataset.indices = indices.cpu().numpy()
    
            # Update mosaic border
            # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
            # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
    
            mloss = torch.zeros(4, device=device)  # mean losses
            if rank != -1:
                dataloader.sampler.set_epoch(epoch)
            pbar = enumerate(dataloader)
            logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
            if rank in [-1, 0]:
                pbar = tqdm(pbar, total=nb)  # progress bar
            optimizer.zero_grad()
            for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
                ni = i + nb * epoch  # number integrated batches (since train start)
                imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0
    
                # Warmup
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                    accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                    for j, x in enumerate(optimizer.param_groups):
                        # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                        if 'momentum' in x:
                            x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
    
                # Multi-scale
                if opt.multi_scale:
                    sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                    sf = sz / max(imgs.shape[2:])  # scale factor
                    if sf != 1:
                        ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                        imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
    
                # Forward
                with amp.autocast(enabled=cuda):
                    pred = model(imgs)  # forward
                    if 'loss_ota' not in hyp or hyp['loss_ota'] == 1:
                        loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs)  # loss scaled by batch_size
                    else:
                        loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                    if rank != -1:
                        loss *= opt.world_size  # gradient averaged between devices in DDP mode
                    if opt.quad:
                        loss *= 4.
    
                # Backward
                scaler.scale(loss).backward()
    
                # Optimize
                if ni % accumulate == 0:
                    scaler.step(optimizer)  # optimizer.step
                    scaler.update()
                    optimizer.zero_grad()
                    if ema:
                        ema.update(model)
    
                # Print
                if rank in [-1, 0]:
                    mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                    mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                    s = ('%10s' * 2 + '%10.4g' * 6) % (
                        '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                    pbar.set_description(s)
    
                    # Plot
                    if plots and ni < 10:
                        f = save_dir / f'train_batch{ni}.jpg'  # filename
                        Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                        # if tb_writer:
                        #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                        #     tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])  # add model graph
                    elif plots and ni == 10 and wandb_logger.wandb:
                        wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
                                                      save_dir.glob('train*.jpg') if x.exists()]})
    
                # end batch ------------------------------------------------------------------------------------------------
            # end epoch ----------------------------------------------------------------------------------------------------
    
            # Scheduler
            lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
            scheduler.step()
    
            # DDP process 0 or single-GPU
            if rank in [-1, 0]:
                # mAP
                ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
                final_epoch = epoch + 1 == epochs
                if not opt.notest or final_epoch:  # Calculate mAP
                    wandb_logger.current_epoch = epoch + 1
                    results, maps, times = test.test(data_dict,
                                                     batch_size=batch_size * 2,
                                                     imgsz=imgsz_test,
                                                     model=ema.ema,
                                                     single_cls=opt.single_cls,
                                                     dataloader=testloader,
                                                     save_dir=save_dir,
                                                     verbose=nc < 50 and final_epoch,
                                                     plots=plots and final_epoch,
                                                     wandb_logger=wandb_logger,
                                                     compute_loss=compute_loss,
                                                     is_coco=is_coco)
    
                # Write
                with open(results_file, 'a') as f:
                    f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
                if len(opt.name) and opt.bucket:
                    os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
    
                # Log
                tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                        'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                        'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                        'x/lr0', 'x/lr1', 'x/lr2']  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    if tb_writer:
                        tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                    if wandb_logger.wandb:
                        wandb_logger.log({tag: x})  # W&B
    
                # Update best mAP
                fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
                if fi > best_fitness:
                    best_fitness = fi
                wandb_logger.end_epoch(best_result=best_fitness == fi)
    
                # Save model
                if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                    ckpt = {'epoch': epoch,
                            'best_fitness': best_fitness,
                            'training_results': results_file.read_text(),
                            'model': deepcopy(model.module if is_parallel(model) else model).half(),
                            'ema': deepcopy(ema.ema).half(),
                            'updates': ema.updates,
                            'optimizer': optimizer.state_dict(),
                            'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
    
                    # Save last, best and delete
                    torch.save(ckpt, last)
                    if best_fitness == fi:
                        torch.save(ckpt, best)
                    if (best_fitness == fi) and (epoch >= 200):
                        torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
                    if epoch == 0:
                        torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
                    elif ((epoch+1) % 25) == 0:
                        torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
                    elif epoch >= (epochs-5):
                        torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
                    if wandb_logger.wandb:
                        if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                            wandb_logger.log_model(
                                last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                    del ckpt
    
            # end epoch ----------------------------------------------------------------------------------------------------
        # end training
        if rank in [-1, 0]:
            # Plots
            if plots:
                plot_results(save_dir=save_dir)  # save as results.png
                if wandb_logger.wandb:
                    files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                    wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
                                                  if (save_dir / f).exists()]})
            # Test best.pt
            logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
            if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
                for m in (last, best) if best.exists() else (last):  # speed, mAP tests
                    results, _, _ = test.test(opt.data,
                                              batch_size=batch_size * 2,
                                              imgsz=imgsz_test,
                                              conf_thres=0.001,
                                              iou_thres=0.7,
                                              model=attempt_load(m, device).half(),
                                              single_cls=opt.single_cls,
                                              dataloader=testloader,
                                              save_dir=save_dir,
                                              save_json=True,
                                              plots=False,
                                              is_coco=is_coco)
    
            # Strip optimizers
            final = best if best.exists() else last  # final model
            for f in last, best:
                if f.exists():
                    strip_optimizer(f)  # strip optimizers
            if opt.bucket:
                os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
            if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
                wandb_logger.wandb.log_artifact(str(final), type='model',
                                                name='run_' + wandb_logger.wandb_run.id + '_model',
                                                aliases=['last', 'best', 'stripped'])
            wandb_logger.finish_run()
        else:
            dist.destroy_process_group()
        torch.cuda.empty_cache()
        return results
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', type=str, default='yolov7.pt', help='initial weights path')
        parser.add_argument('--cfg', type=str, default='cfg/training/yolov7.yaml', help='model.yaml path')
        parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
        parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
        parser.add_argument('--epochs', type=int, default=300)
        parser.add_argument('--batch-size', type=int, default=4, help='total batch size for all GPUs')
        parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
        parser.add_argument('--rect', action='store_true', help='rectangular training')
        parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
        parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
        parser.add_argument('--notest', action='store_true', help='only test final epoch')
        parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
        parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
        parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
        parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
        parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
        parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
        parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
        parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
        parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
        parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
        parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')
        parser.add_argument('--project', default='runs/train', help='save to project/name')
        parser.add_argument('--entity', default=None, help='W&B entity')
        parser.add_argument('--name', default='exp', help='save to project/name')
        parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
        parser.add_argument('--quad', action='store_true', help='quad dataloader')
        parser.add_argument('--linear-lr', action='store_true', help='linear LR')
        parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
        parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
        parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
        parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
        parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
        parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2')
        opt = parser.parse_args()
    
        # Set DDP variables
        opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
        opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
        set_logging(opt.global_rank)
        #if opt.global_rank in [-1, 0]:
        #    check_git_status()
        #    check_requirements()
    
        # Resume
        wandb_run = check_wandb_resume(opt)
        if opt.resume and not wandb_run:  # resume an interrupted run
            ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
            assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
            apriori = opt.global_rank, opt.local_rank
            with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
                opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader))  # replace
            opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
            logger.info('Resuming training from %s' % ckpt)
        else:
            # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
            opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
            assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
            opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
            opt.name = 'evolve' if opt.evolve else opt.name
            opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve)  # increment run
    
        # DDP mode
        opt.total_batch_size = opt.batch_size
        device = select_device(opt.device, batch_size=opt.batch_size)
        if opt.local_rank != -1:
            assert torch.cuda.device_count() > opt.local_rank
            torch.cuda.set_device(opt.local_rank)
            device = torch.device('cuda', opt.local_rank)
            dist.init_process_group(backend='nccl', init_method='env://')  # distributed backend
            assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
            opt.batch_size = opt.total_batch_size // opt.world_size
    
        # Hyperparameters
        with open(opt.hyp) as f:
            hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps
    
        # Train
        logger.info(opt)
        if not opt.evolve:
            tb_writer = None  # init loggers
            if opt.global_rank in [-1, 0]:
                prefix = colorstr('tensorboard: ')
                logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
                tb_writer = SummaryWriter(opt.save_dir)  # Tensorboard
            train(hyp, opt, device, tb_writer)
    
        # Evolve hyperparameters (optional)
        else:
            # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
            meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                    'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                    'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                    'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                    'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                    'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                    'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                    'box': (1, 0.02, 0.2),  # box loss gain
                    'cls': (1, 0.2, 4.0),  # cls loss gain
                    'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                    'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                    'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                    'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                    'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                    'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                    'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                    'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                    'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                    'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                    'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                    'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                    'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                    'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                    'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                    'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                    'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                    'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                    'mixup': (1, 0.0, 1.0),   # image mixup (probability)
                    'copy_paste': (1, 0.0, 1.0),  # segment copy-paste (probability)
                    'paste_in': (1, 0.0, 1.0)}    # segment copy-paste (probability)
            
            with open(opt.hyp, errors='ignore') as f:
                hyp = yaml.safe_load(f)  # load hyps dict
                if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                    hyp['anchors'] = 3
                    
            assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
            opt.notest, opt.nosave = True, True  # only test/save final epoch
            # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
            yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
            if opt.bucket:
                os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists
    
            for _ in range(300):  # generations to evolve
                if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                    # Select parent(s)
                    parent = 'single'  # parent selection method: 'single' or 'weighted'
                    x = np.loadtxt('evolve.txt', ndmin=2)
                    n = min(5, len(x))  # number of previous results to consider
                    x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                    w = fitness(x) - fitness(x).min()  # weights
                    if parent == 'single' or len(x) == 1:
                        # x = x[random.randint(0, n - 1)]  # random selection
                        x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                    elif parent == 'weighted':
                        x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
    
                    # Mutate
                    mp, s = 0.8, 0.2  # mutation probability, sigma
                    npr = np.random
                    npr.seed(int(time.time()))
                    g = np.array([x[0] for x in meta.values()])  # gains 0-1
                    ng = len(meta)
                    v = np.ones(ng)
                    while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                        v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                    for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                        hyp[k] = float(x[i + 7] * v[i])  # mutate
    
                # Constrain to limits
                for k, v in meta.items():
                    hyp[k] = max(hyp[k], v[1])  # lower limit
                    hyp[k] = min(hyp[k], v[2])  # upper limit
                    hyp[k] = round(hyp[k], 5)  # significant digits
    
                # Train mutation
                results = train(hyp.copy(), opt, device)
    
                # Write mutation results
                print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
    
            # Plot results
            plot_evolution(yaml_file)
            print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
                  f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
    

    7.UI界面的编写&系统的整合

    class Thread_1(QThread):  # 线程1
        def __init__(self,info1):
            super().__init__()
            self.info1=info1
            self.run2(self.info1)
    
        def run2(self, info1):
            result = []
            result = det_yolov7(info1)
    
    
    class Ui_MainWindow(object):
        def setupUi(self, MainWindow):
            MainWindow.setObjectName("MainWindow")
            MainWindow.resize(1280, 960)
            MainWindow.setStyleSheet("background-image: url(\"./template/carui.png\")")
            self.centralwidget = QtWidgets.QWidget(MainWindow)
            self.centralwidget.setObjectName("centralwidget")
            self.label = QtWidgets.QLabel(self.centralwidget)
            self.label.setGeometry(QtCore.QRect(168, 60, 551, 71))
            self.label.setAutoFillBackground(False)
            self.label.setStyleSheet("")
            self.label.setFrameShadow(QtWidgets.QFrame.Plain)
            self.label.setAlignment(QtCore.Qt.AlignCenter)
            self.label.setObjectName("label")
            self.label.setStyleSheet("font-size:42px;font-weight:bold;font-family:SimHei;background:rgba(255,255,255,0);")
            self.label_2 = QtWidgets.QLabel(self.centralwidget)
            self.label_2.setGeometry(QtCore.QRect(40, 188, 751, 501))
            self.label_2.setStyleSheet("background:rgba(255,255,255,1);")
            self.label_2.setAlignment(QtCore.Qt.AlignCenter)
            self.label_2.setObjectName("label_2")
            self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget)
            self.textBrowser.setGeometry(QtCore.QRect(73, 746, 851, 174))
            self.textBrowser.setStyleSheet("background:rgba(0,0,0,0);")
            self.textBrowser.setObjectName("textBrowser")
            self.pushButton = QtWidgets.QPushButton(self.centralwidget)
            self.pushButton.setGeometry(QtCore.QRect(1020, 750, 150, 40))
            self.pushButton.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget)
            self.pushButton_2.setGeometry(QtCore.QRect(1020, 810, 150, 40))
            self.pushButton_2.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget)
            self.pushButton_3.setGeometry(QtCore.QRect(1020, 870, 150, 40))
            self.pushButton_3.setStyleSheet("background:rgba(53,142,255,1);border-radius:10px;padding:2px 4px;")
            self.pushButton_3.setObjectName("pushButton_2")
            MainWindow.setCentralWidget(self.centralwidget)
    
            self.retranslateUi(MainWindow)
            QtCore.QMetaObject.connectSlotsByName(MainWindow)
    
        def retranslateUi(self, MainWindow):
            _translate = QtCore.QCoreApplication.translate
            MainWindow.setWindowTitle(_translate("MainWindow", "基于YOLO&Deepsort的交通车流量统计系统"))
            self.label.setText(_translate("MainWindow", "基于YOLO&Deepsort的交通车流量统计系统"))
            self.label_2.setText(_translate("MainWindow", "请添加对象,注意路径不要存在中文"))
            self.pushButton.setText(_translate("MainWindow", "选择对象"))
            self.pushButton_2.setText(_translate("MainWindow", "开始识别"))
            self.pushButton_3.setText(_translate("MainWindow", "退出系统"))
    
            # 点击文本框绑定槽事件
            self.pushButton.clicked.connect(self.openfile)
            self.pushButton_2.clicked.connect(self.click_1)
            self.pushButton_3.clicked.connect(self.handleCalc3)
    
        def openfile(self):
            global sname, filepath
            fname = QFileDialog()
            fname.setAcceptMode(QFileDialog.AcceptOpen)
            fname, _ = fname.getOpenFileName()
            if fname == '':
                return
            filepath = os.path.normpath(fname)
            sname = filepath.split(os.sep)
            ui.printf("当前选择的文件路径是:%s" % filepath)
            try:
                show = cv2.imread(filepath)
                ui.showimg(show)
            except:
                ui.printf('请检查路径是否存在中文,更名后重试!')
    
    
        def handleCalc3(self):
            os._exit(0)
    
        def printf(self,text):
            self.textBrowser.append(text)
            self.cursor = self.textBrowser.textCursor()
            self.textBrowser.moveCursor(self.cursor.End)
            QtWidgets.QApplication.processEvents()
    
        def showimg(self,img):
            global vid
            img2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    
            _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], img2.shape[1] * 3,
                                  QtGui.QImage.Format_RGB888)
            n_width = _image.width()
            n_height = _image.height()
            if n_width / 500 >= n_height / 400:
                ratio = n_width / 700
            else:
                ratio = n_height / 700
            new_width = int(n_width / ratio)
            new_height = int(n_height / ratio)
            new_img = _image.scaled(new_width, new_height, Qt.KeepAspectRatio)
            self.label_2.setPixmap(QPixmap.fromImage(new_img))
    
        def click_1(self):
            global filepath
            try:
                self.thread_1.quit()
            except:
                pass
            self.thread_1 = Thread_1(filepath)  # 创建线程
            self.thread_1.wait()
            self.thread_1.start()  # 开始线程
    
    
    if __name__ == "__main__":
        app = QtWidgets.QApplication(sys.argv)
        MainWindow = QtWidgets.QMainWindow()
        ui = Ui_MainWindow()
        ui.setupUi(MainWindow)
        MainWindow.show()
        sys.exit(app.exec_())
    

    8.项目展示

    1.png

    9.完整源码&环境部署视频教程&自定义UI界面:

    [YOLOv7]基于YOLO&Deepsort的人流量统计系统(源码&部署教程) (mianbaoduo.com)

    10.参考文献:


    【1】YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

    相关文章

      网友评论

          本文标题:[YOLOv7]基于YOLO&Deepsort的人流量统计系统(

          本文链接:https://www.haomeiwen.com/subject/jmbsnrtx.html