美文网首页
Kafka使用Apache Avro序列化

Kafka使用Apache Avro序列化

作者: SimpleEasy | 来源:发表于2019-04-05 16:05 被阅读0次

    1,什么是序列化和反序列化

    当需要将数据存入文件或者通过网络发送出去时,需将数据对象转化为字节流,即对数据序列化,而将字节流还原成对象即反序列化。常用的序列化框架有Apache Avro、Twitter的Thrift和Google的Protobuf。它们之间的显著区别就是Avro支持IDL(接口描述语言)和Json描述schema,而Thrift和Protobuf只支持IDL描述Schema。本文将讨论Kafka中如何利用Apache avro框架序列/反序列化。

    2,Apache avro序列化步骤

    第一步:准备jar包

    从官网下载avro-1.7.7.jar 和 avro-tools-1.7.7.jar两个jar包,放到指定文件目录。下载地址为http://www.trieuvan.com/apache/avro/avro-1.7.7/java/。

    第二步:编写Schema描述文件

    可以用Json和IDL描述schema,本文以Json描述schema文件。如创建stock.avsc的文本文件,文件内容如下:

    {

        "namespace": "example.avro",

        "type": "record",

        "name": "Stock",

        "fields": [

            {"name": "stockCode", "type": "string"},

            {"name": "stockName",  "type": "string"},

            {"name": "tradeTime", "type": "long"},

            {"name": "preClosePrice", "type": "float"},

            {"name": "openPrice", "type": "float"},

            {"name": "currentPrice", "type": "float"},

            {"name": "highPrice", "type": "float"},

            {"name": "lowPrice", "type": "float"}

        ]

    }

    第三步:自动生成Java 对象类

    执行如下命令:

    java -jar avro-tools-1.7.7.jar compile schema stock.avsc java .

    文中的 . 表示当前目录

    第四步:在maven工程中引入下面jar包

    <dependency>

      <groupId>org.apache.avro</groupId>

      <artifactId>avro</artifactId>

      <version>1.7.7</version>

    </dependency>

    第五步:将自动生成的java 对象源码放入到工程中,并注意修改代码中的包路径等。可以利用查找example.avro 替换成自己工程的包路径;

    第六步:自定义序列化和反序列化类

    序列化类:

    package com.bigdata.kafkasender;

    import java.io.ByteArrayOutputStream;

    import java.io.IOException;

    import java.util.Map;

    import org.apache.avro.io.BinaryEncoder;

    import org.apache.avro.io.DatumWriter;

    import org.apache.avro.io.EncoderFactory;

    import org.apache.avro.specific.SpecificDatumWriter;

    import org.apache.kafka.common.errors.SerializationException;

    import org.apache.kafka.common.serialization.Serializer;

    public class AvroSerializer implements Serializer<Stock> {

        @Override

        public void close() {

        }

        @Override

        public void configure(Map<String, ?> arg0, boolean arg1) {

        }

        @Override

        public byte[] serialize(String topic, Stock data) {

            if (data == null) {

                return null;

            }

            DatumWriter<Stock> writer = new SpecificDatumWriter<>(data.getSchema());

            ByteArrayOutputStream out = new ByteArrayOutputStream();

            BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);

            try {

                writer.write(data, encoder);

            } catch (IOException e) {

                throw new SerializationException(e.getMessage());

            }

            return out.toByteArray();

        }

    }

    反序列化类:

    package com.bigdata.kafkasender;

    import java.io.ByteArrayInputStream;

    import java.io.IOException;

    import java.util.Map;

    import org.apache.avro.io.BinaryDecoder;

    import org.apache.avro.io.DatumReader;

    import org.apache.avro.io.DecoderFactory;

    import org.apache.avro.specific.SpecificDatumReader;

    import org.apache.kafka.common.serialization.Deserializer;

    public class AvroDeserializer implements Deserializer<Stock> {

        @Override

        public void close() {}

        @Override

        public void configure(Map<String, ?> arg0, boolean arg1) {}

        @Override

        public Stock deserialize(String topic, byte[] data) {

            if(data == null) {

                return null;

            }

            Stock stock = new Stock();

            ByteArrayInputStream in = new ByteArrayInputStream(data);

            DatumReader<Stock> userDatumReader = new SpecificDatumReader<>(stock.getSchema());

            BinaryDecoder decoder = DecoderFactory.get().directBinaryDecoder(in, null);

            try {

                stock = userDatumReader.read(null, decoder);

            } catch (IOException e) {

                e.printStackTrace();

            }

            return stock;

        }

    }

    第七步:编写kafka生产者

    package com.bigdata.kafkasender;

    import org.apache.kafka.clients.producer.KafkaProducer;

    import org.apache.kafka.clients.producer.ProducerRecord;

    import org.apache.kafka.clients.producer.RecordMetadata;

    import java.util.Properties;

    import java.util.concurrent.ExecutionException;

    import java.util.concurrent.Future;

    public class KafkaSenderApplication {

        public static void main(String[] args) throws ExecutionException, InterruptedException {

            Stock[] stocks = new Stock[100];

            for (int i = 0; i < 100; i++) {

                stocks[i] = new Stock();

                stocks[i].setStockCode(String.valueOf(i));

                stocks[i].setStockName("stock" + i);

                stocks[i].setTradeTime(System.currentTimeMillis());

                stocks[i].setPreClosePrice(100.0F);

                stocks[i].setOpenPrice(88.8F);

                stocks[i].setCurrentPrice(120.5F);

                stocks[i].setHighPrice(300.0F);

                stocks[i].setLowPrice(12.4F);

            }

            Properties props = new Properties();

            props.put("bootstrap.servers", "xx.x.x.xx:9094");

            props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");

            props.put("value.serializer", "com.bigdata.kafkasender.AvroSerializer");

            KafkaProducer<String, Stock> producer = new KafkaProducer<>(props);

            Future<RecordMetadata> result = null;

            for (Stock stock : stocks) {

                ProducerRecord<String, Stock> record = new ProducerRecord<>("avro1", stock);

                RecordMetadata metadata = producer.send(record).get();

                StringBuilder sb = new StringBuilder();

                sb.append("stock: ").append(stock.toString()).append(" has been sent successfully!").append("\n")

                        .append("send to partition ").append(metadata.partition())

                        .append(", offset = ").append(metadata.offset());

                System.out.println(sb.toString());

                Thread.sleep(100);

            }

            producer.close();

        }

    }

    第八步:编写消费者

    public static void consumeMessage() {

            Properties props = new Properties();

            /* 定义kakfa 服务的地址,不需要将所有broker指定上 */

            props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "sxxxx:9094");

            /* 制定consumer group */

            // props.put("group.id", "flume");

            props.put("group.id", "avro1");

            props.put("auto.offset.reset", "earliest");

            /* key的序列化类 */

            props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

            /* value的序列化类 */

            props.put("value.deserializer", "com.bigdata.kafkasender.AvroDeserializer");

            /* 定义consumer */

            KafkaConsumer<String, Stock> consumer = new KafkaConsumer<>(props);

            /* 消费者订阅的topic, 可同时订阅多个 */

            consumer.subscribe(Arrays.asList("avro1"));

            System.out.println("begin consume!");

            /* 读取数据,读取超时时间为100ms */

            Duration duration = Duration.ofMillis(100);

            while (true) {

                ConsumerRecords<String, Stock> records = consumer.poll(duration);

                for (ConsumerRecord<String, Stock> record : records)

                    System.out.printf("offset = %d, key = %s, value = %s", record.offset(), record.key(),

                            record.value().toString() + "\n");

            }

        }

        public static void main(String[] args) {

    // produceMessage();

            consumeMessage();

        }

    相关文章

      网友评论

          本文标题:Kafka使用Apache Avro序列化

          本文链接:https://www.haomeiwen.com/subject/jmfkiqtx.html