tf.train.ExponentialMovingAverage(decay, steps)
tf.train.ExponentialMovingAverage这个函数用于更新参数,就是采用滑动平均的方法更新参数。这个函数初始化需要提供一个衰减速率(decay),用于控制模型的更新速度。这个函数还会维护一个影子变量(也就是更新参数后的参数值),这个影子变量的初始值就是这个变量的初始值,影子变量值的更新方式如下:
shadow_variable = decay * shadow_variable + (1-decay) * variable
shadow_variable是影子变量,variable表示待更新的变量,也就是变量被赋予的值,decay为衰减速率。decay一般设为接近于1的数(0.99,0.999)。decay越大模型越稳定,因为decay越大,参数更新的速度就越慢,趋于稳定。
tf.train.ExponentialMovingAverage这个函数还提供了自己动更新decay的计算方式:
decay= min(decay,(1+steps)/(10+steps))
steps是迭代的次数,可以自己设定。
比如:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(tf.constant(0))
ema = tf.train.ExponentialMovingAverage(0.99, step)
maintain_average = ema.apply([v1])
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
print sess.run([v1, ema.average(v1)]) #初始的值都为0
sess.run(tf.assign(v1, 5)) #把v1变为5
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)]) # decay=min(0.99, 1/10)=0.1, v1=0.1*0+0.9*5=4.5
sess.run(tf.assign(step, 10000)) # steps=10000
sess.run(tf.assign(v1, 10)) # v1=10
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)]) # decay=min(0.99,(1+10000)/(10+10000))=0.99, v1=0.99*4.5+0.01*10=4.555
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)]) #decay=min(0.99,<span style="font-family:Arial, Helvetica, sans-serif;">(1+10000)/(10+10000)</span><span style="font-family:Arial, Helvetica, sans-serif;">)=0.99, v1=0.99*4.555+0.01*10=4.6</span>
输出:
[0.0, 0.0]
[5.0, 4.5]
[10.0, 4.5549998]
[10.0, 4.6094499]
解释:每次更新完以后,影子变量的值更新,varible的值就是你设定的值。如果在下一次运行这个函数的时候你不在指定新的值,那就不变,影子变量更新。如果指定,那就variable改变,影子变量也改变
网友评论