美文网首页
ThreadPoolExecutor线程池原理以及源码分析

ThreadPoolExecutor线程池原理以及源码分析

作者: 无聊之园 | 来源:发表于2019-05-01 15:52 被阅读0次

    线程池流程:

    线程池核心类:
    ThreadPoolExecutor:普通的线程池
    ScheduledThreadPoolExecutor: 延时重复执行线程池。暂不研究
    ForkJoinPool:fork join分片合并线程池。暂不研究
    Executors:线程池工具类,提供了6中线程池工具方法:
    1.newFixedThreadPool

    public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }
    

    返回ThreadPoolExecutor对象,核心线程数和最大线程数相等,堵塞队列为LinkedBlockingQueue,大小没有限制,意味着,当核心线程数满了之后,一直往堵塞队列添加任务,知道Integer.MAX_VALUE。故在一定条件下,会占用很多内存。

    2.newCachedThreadPool

    public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }
    

    返回ThreadPoolExecutor对象,核心线程数为0, 最大线程数为Integer.MAX_VALUE, 线程空闲时间为60秒,堵塞队列为同步队列,SynchronousQueue队列的put和take是互相唤醒的,但是线程池execute提交任务调用的是offer方法,offer方法不会堵塞,能添加进去则添加进去(只有其他线程正在poll堵塞在那,才可能offer进去),不能则马上返回然后启动一个线程执行,线程获取任务调用的是poll方法,因为poll方法可以设定超时时间,来达到超时60秒就返回线程结束的机制,而take方法没有超时机制。
    再一定条件下,可能会产生很多个线程,占用大量的资源。

    3.newScheduledThreadPool

    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
           return new ScheduledThreadPoolExecutor(corePoolSize);
       }
    

    暂不研究
    4.newSingleThreadExecutor

    public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }
    

    newFixedThreadPool的单线程版
    5.newSingleThreadScheduledExecutor

    public static ScheduledExecutorService newSingleThreadScheduledExecutor() {
            return new DelegatedScheduledExecutorService
                (new ScheduledThreadPoolExecutor(1));
        }
    

    暂不研究
    6.newWorkStealingPool

    public static ExecutorService newWorkStealingPool() {
            return new ForkJoinPool
                (Runtime.getRuntime().availableProcessors(),
                 ForkJoinPool.defaultForkJoinWorkerThreadFactory,
                 null, true);
        }
    

    暂不研究。

    ThreadPoolExecutor源码分析

    内部类

    image.png
    总共有5个内部类,前面4个是拒绝任务策略,最后一个是实际执行任务的线程子类。
    4个拒绝任务策略类都很简单:
    AbortPolicy:直接报错。
    CallerRunsPolicy:如果线程池正在运行,则执行掉抛弃的任务。
    DiscardOldestPolicy:如果线程池正在运行,则抛弃堵塞队列的头部最先进堵塞队列的任务,重新提交任务。
    DiscardPolicy: 抛弃任务,什么都不做
    真正执行任务的类:
    work:
    /** 父类位AQS类,实现了tryAcquire和tryRelease方法,能够同步锁住资源。
    * 实现了runnable接口,所以可以直接new Thread(worker)进行线程执行。
    **/
    private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            // 执行自身work任务的线程引用
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            // 线程当前执行的任务,firstTask任务,会从堵塞队列中不停的取
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                // 指定的线程factory创建线程,传入了work本身,
              //所以这个线程start的时候,执行的就是work的run方法
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                // 真正开启线程,循环从堵塞队列中取任务执行
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
            // 最简单粗暴的锁资源,没有读写锁,可重入锁等等
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    

    关键成员变量

    // ctl变量保存了两个元素:workcount线程数量和runstate线程池运行状态
    // runstate只有5中情况,3个字节可以表示完。int类型占32个字节,还剩29个字节,这29个字节表示workCount。
    //组成就是:高3位表示runstate,低29位表示workcount
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        // 正常运行
        private static final int RUNNING    = -1 << COUNT_BITS;
        // 线程池关闭,不接受新任务,已经进入队列的任务会执行完
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        // 线程池停止,不接受新任务,也不执行队列任务
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
      // 堵塞队列
     private final BlockingQueue<Runnable> workQueue;
    // 可重入锁,锁住一些并发操作,比如,添加工作线程
        private final ReentrantLock mainLock = new ReentrantLock();
    
        /**
         * Set containing all worker threads in pool. Accessed only when
         * holding mainLock.
         */
        private final HashSet<Worker> workers = new HashSet<Worker>();
    
        /**
         * Wait condition to support awaitTermination
         */
        private final Condition termination = mainLock.newCondition();
    
        /**
         * Tracks largest attained pool size. Accessed only under
         * mainLock.
         */
      // 最大线程数容量,实际最大开启过的线程数
        private int largestPoolSize;
    
        /**
         * Counter for completed tasks. Updated only on termination of
         * worker threads. Accessed only under mainLock.
         */
        private long completedTaskCount;
    
        /*
         * All user control parameters are declared as volatiles so that
         * ongoing actions are based on freshest values, but without need
         * for locking, since no internal invariants depend on them
         * changing synchronously with respect to other actions.
         */
    
        private volatile ThreadFactory threadFactory;
    
        /**
         * Handler called when saturated or shutdown in execute.
         */
        private volatile RejectedExecutionHandler handler;
    
        /**
         * Timeout in nanoseconds for idle threads waiting for work.
         * Threads use this timeout when there are more than corePoolSize
         * present or if allowCoreThreadTimeOut. Otherwise they wait
         * forever for new work.
         */
        private volatile long keepAliveTime;
    
        /**
         * If false (default), core threads stay alive even when idle.
         * If true, core threads use keepAliveTime to time out waiting
         * for work.
         */
        private volatile boolean allowCoreThreadTimeOut;
        // 核心线程数
        private volatile int corePoolSize;
    
        /**
         * Maximum pool size. Note that the actual maximum is internally
         * bounded by CAPACITY.
         */
        // 最大线程数
        private volatile int maximumPoolSize;
    
        /**
         * The default rejected execution handler
         */
        // 默认抛弃策略是报错
        private static final RejectedExecutionHandler defaultHandler =
            new AbortPolicy();
    

    构造函数
    初始化一些成员变量

    public ThreadPoolExecutor(int corePoolSize,
                                 int maximumPoolSize,
                                 long keepAliveTime,
                                 TimeUnit unit,
                                 BlockingQueue<Runnable> workQueue,
                                 ThreadFactory threadFactory,
                                 RejectedExecutionHandler handler) {
           if (corePoolSize < 0 ||
               maximumPoolSize <= 0 ||
               maximumPoolSize < corePoolSize ||
               keepAliveTime < 0)
               throw new IllegalArgumentException();
           if (workQueue == null || threadFactory == null || handler == null)
               throw new NullPointerException();
           this.corePoolSize = corePoolSize;
           this.maximumPoolSize = maximumPoolSize;
           this.workQueue = workQueue;
           this.keepAliveTime = unit.toNanos(keepAliveTime);
           this.threadFactory = threadFactory;
           this.handler = handler;
       }
    

    关键方法
    execute方法

    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            // 正在运行的工作线程数小于核心线程数,则addWorker方法开启新的工作线程
    // 如果已开启的工作线程数大于或等于核心线程数,则把任务添加入堵塞队列
    // 添加失败,则继续开启工作线程,如果已经开启线程数小于最大线程数,则添加成功,否则,使用指定的拒绝策略拒绝
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            // 添加失败,则继续开启非核心线程执行任务
            else if (!addWorker(command, false))
                reject(command);
        }
    
     private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    // core为true,则和核心线程数比较,core为false,则和最大线程数比较
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                // 构建新workker工作线程,firstTask为传入的runnable,thread为根据传入的runnable构建的线程
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                   // 开启工作线程,是同步造作,不能并发 
                   mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    // 添加成功,则启动新工作线程,新线程会执行worker类的run方法
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    
    Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                 // 开启线程后,第一次执行的是本身的worker任务,而不是从队列中取任务。
                this.firstTask = firstTask;
                // worker的thread为根据传入的runnable构建的线程,故开启线程,则会运行run方法
                this.thread = getThreadFactory().newThread(this);
            }
    

    启动工作线程之后

     /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
    final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                 // 循环从堵塞队列中取任务执行,直到取不到了
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        // beforeExecute为空方法,用户可以重写它,在执行任务前,
                      // 可以执行一些用户自定义操作
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                           // afterExecute为空方法,用户可以重写它,在执行任务后,
                          // 可以执行一些用户自定义操作
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                 // 直到到这里,说明这个工作线程要死了。要不线程池非runtime状态,要不堵塞队列空了,做一些资源收尾操作
                processWorkerExit(w, completedAbruptly);
            }
        }
    
    private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                // 这个线程是否有超时关闭,还是一直运行。当前线程数大于核心线程数,则需要超时关闭
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
                
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                     // 需要超时关闭,则堵塞队列为空,poll方法超时则返回不会一直堵塞,不需要超时关闭,则take方法会一直堵塞
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    再看一个方法getActiveCount方法,
    不能用executorService.getActiveCount()方法查看线程数,因为,这个方法查看的并非是真正的线程数,而是正在执行任务的线程数,看源码就会发现,只会对没有unlock的work技术,而work只要执行完了task.run方法就会释放lock,也就不会计数。

    public int getActiveCount() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                int n = 0;
                for (Worker w : workers)
                    if (w.isLocked())
                        ++n;
                return n;
            } finally {
                mainLock.unlock();
            }
        }
    

    总结:ThreadPoolExecutor大概的运行流程是:指定核心线程数,最大线程数,堵塞队列类型,大小,抛弃策略,非核心线程空闲时间。execute提交任务的时候,如果已经开启的工作线程数小于核心线程数,则开启工作线程处理这个任务,并且会一直从堵塞队列取任务执行,堵塞队列为空,则堵塞这个线程。如果已经开启的工作线程数大于核心线程数,则将任务放入堵塞队列,直到堵塞队列放不下之后,开启非核心线程数执行任务,如果总线程数小于最大线程数,则开启成功,否则,开启失败,走指定的拒绝策略。非核心线程数,空闲指定时间后会关闭,就是当堵塞队列没有任务了一段时间后,非核心线程会关闭,核心线程会一直堵塞,不会关闭。

    相关文章

      网友评论

          本文标题:ThreadPoolExecutor线程池原理以及源码分析

          本文链接:https://www.haomeiwen.com/subject/jpminqtx.html