美文网首页科研信息学
机器学习的敲门砖:kNN算法(上)

机器学习的敲门砖:kNN算法(上)

作者: CDA数据分析师培训 | 来源:发表于2019-09-25 17:03 被阅读0次

    作者 | Japson
    来源 | 木东居士

    0x00 前言

    天下苦数学久矣!

    对于很多想要入门机器学习的工程师来说,数学是通往AI道路上的第一支拦路虎。一些已经工作的同学不得不捡起早已还给老师的数学知识,勉强拿起《统计学习方法》、《西瓜书》等入门书籍钻研。或被一个个复杂的机公式劝退,或记下一堆公式定理之后却不知道和代码有什么关系,茫然不知所措。

    其实对于工程师来说,最直接的入门方法就是coding。

    本系列从最简单的机器学习算法“K-近邻算法”开始,通过代码走进机器学习的大门,搞定传统机器学习算法。

    首先会介绍算法的基本原理,然后依据原理手动实现算法,最后使用sklearn中提供的机器学习库完成一些小demo。不用担心,相关的机器学习概念以及算法原理也会穿插其中,帮助你以“代码->原理->代码”这种迭代的方式完成学习。

    需要:

    掌握Python语言,能够使用Numpy、Pandas等工具库。
    安装Anaconda

    不要求对机器学习算法以及相关概念有很深刻的了解,因为在文章中会对首次出现的概念进行介绍。

    子曰:“先行其言而后从之”。行动永远是引发改变的第一步,话不多说,先让我们码起来吧!

    0x01 初探kNN算法

    为什么选择kNN

    为什么说KNN算法是机器学习的敲门砖?

    首先KNN算法思想简单朴素,容易理解,几乎不需要任何数学知识。这一点使得KNN算法非常适合入门。

    其次,KNN算法也很好用,理论成熟,简单粗暴,既可以用来做分类(天然支持多分类),也可以用来做回归。并且与朴素贝叶斯之类的算法相比,由于其对数据没有假设,因此准确度高,对异常点不敏感。

    最后,kNN算法简单,但是可以解释机器学习算法过程中的很多细节问题,能够完整的刻画机器学习应用的流程。

    当然KNN算法也有缺点,我们会在最后进行总结。

    kNN思想简介

    鲁迅曾经说过:“想要了解一个人,就去看看他的朋友”。因此,KNN算法是鲁迅发明的。

    kNN(k-NearestNeighbor),也就是k最近邻算法。顾名思义,所谓K最近邻,就是k个最近的邻居的意思。也就是在数据集中,认为每个样本可以用离他最距离近的k个邻居来代表。

    贴出一张从百度百科上找的一张图,我们可以直观地感受到这朴素的思想:我们要判断Xu 是什么颜色的,找到与其距离最近的5个点,有4个是红色的,有1个是绿色的。因此我们认为Xu是属于红色的集合

    因此我们说:

    在一个给定的类别已知的训练样本集中,已知样本集中每一个数据与所属分类的对应关系(标签)。在输入不含有标签的新样本后,将新的数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本最相似的k个数据(最近邻)的分类标签。通过多数表决等方式进行预测。即选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
    K近邻法不具有显式的学习过程,而是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。

    kNN算法流程

    通过理解算法思想,可以将其简化为“找邻居+投票”。K近邻法使用的模型,实际上是特征空间的划分。模型由三个基本要素决定:

    • 距离度量
    • k值
    • 分类决策规则

    其中两个实例点之间的距离反映了相似程度。一般来说使用欧氏距离来计算。

    梳理kNN算法流程如下:

    1. 计算测试对象到训练集中每个对象的距离
    2. 按照距离的远近排序
    3. 选取与当前测试对象最近的k的训练对象,作为该测试对象的邻居
    4. 统计这k个邻居的类别频率
    5. k个邻居里频率最高的类别,即为测试对象的类别

    0x02 算法实现

    kNN算法自实现

    打开Jupyter Notebook,创建Python3文件。

    准备数据

    首先我们准备一组数据:

    import numpy as npimport matplotlib.pyplot as plt# raw_data_x是特征,raw_data_y是标签,0为良性,1为恶性raw_data_X = [[3.393533211, 2.331273381],
                  [3.110073483, 1.781539638],
                  [1.343853454, 3.368312451],
                  [3.582294121, 4.679917921],
                  [2.280362211, 2.866990212],
                  [7.423436752, 4.685324231],
                  [5.745231231, 3.532131321],
                  [9.172112222, 2.511113104],
                  [7.927841231, 3.421455345],
                  [7.939831414, 0.791631213]
                 ]
    raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]# 设置训练组X_train = np.array(raw_data_X)
    y_train = np.array(raw_data_y)# 将数据可视化plt.scatter(X_train[y_train==0,0],X_train[y_train==0,1], color='g', label = 'Tumor Size')
    plt.scatter(X_train[y_train==1,0],X_train[y_train==1,1], color='r', label = 'Time')
    plt.xlabel('Tumor Size')
    plt.ylabel('Time')
    plt.axis([0,10,0,5])
    plt.show()
    

    数据可视化后生成的图片如下图所示。其中横轴是肿块大小,纵轴是发现时间。每个病人的肿块大小和发病时间构成了二维平面特征中的一个点。对于每个点,我们通过label明确是恶性肿瘤(绿色)、良性肿瘤(红色)。

    那么现在给出一个肿瘤患者的数据(样本点)x:[8.90933607318, 3.365731514],是良性肿瘤还是恶性肿瘤

    求距离

    我们要做的是:求点x到数据集中每个点的距离,首先计算距离,使用欧氏距离

    下面写代码:

    from math import sqrt
    
    distances = []  # 用来记录x到样本数据集中每个点的距离for x_train in X_train:
        d = sqrt(np.sum((x_train - x) ** 2))
        distances.append(d)# 使用列表生成器,一行就能搞定,对于X_train中的每一个元素x_train都进行前面的运算,把结果生成一个列表distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in X_train]
    
    distances
    
    输出:[5.611968000921151, 6.011747706769277, 7.565483059418645, 5.486753308891268, 6.647709180746875, 1.9872648870854204, 3.168477291709152, 0.8941051007010301, 0.9830754144862234, 2.7506238644678445]
    

    在求出距离列表之后,我们要找到最小的距离,需要进行一次排序操作。其实不是简单的排序,因为我们把只将距离排大小是没有意义的,我们要知道距离最小的k个点是在样本集中的位置。

    这里我们使用函数:np.argsort(array) 对一个数组进行排序,返回的是相应的排序后结果的索引

    nearest = np.argsort(distances)
    nearest
    
    输出:array([7, 8, 5, 9, 6, 3, 0, 1, 4, 2])
    结果的含义是:距离最小的点在distances数组中的索引是7,第二小的点索引是8... 近到远是哪些点
    

    选k值

    然后我们选择k值,这里暂定为6,那就找出最近的6个点(top 6),并记录他们的标签值(y)

    k = 6topK_y = [y_train[i] for i in nearest[:k]]
    topK_y
    
    输出:[1, 1, 1, 1, 1, 0]
    

    决策规则

    下面进入投票环节。找到与测试样本点最近的6个训练样本点的标签y是什么。可以查不同类别的点有多少个。

    将数组中的元素和元素出现的频次进行统计

    from collections import Counter
    votes = Counter(topK_y)
    votes
    
    输出:一个字典,原数组中值为0的个数为1,值为1的个数有为5Counter({0:1, 1:5})
    
    # Counter.most_common(n) 找出票数最多的n个元素,返回的是一个列表,列表中的每个元素是一个元组,元组中第一个元素是对应的元素是谁,第二个元素是频次votes.most_common(1)
    
    输出:[(1,5)]
    
    predict_y = votes.most_common(1)[0][0]
    predict_y
    
    输出:1
    

    得到预测的y值是1

    自实现完整工程代码

    我们已经在jupyter notebook中写好了kNN算法,下面我们在外部进行封装。

    相关代码可以在 https://github.com/japsonzbz/ML_Algorithms 中看到

    import numpy as npimport math as sqrtfrom collections import Counterclass kNNClassifier:
    
        def __init__(self, k):
            """初始化分类器"""
            assert k >= 1, "k must be valid"
            self.k = k
            self._X_train = None
            self._y_train = None
    
        def fit(self, X_train, y_train):
            """根据训练数据集X_train和y_train训练kNN分类器"""
            assert X_train.shape[0] == y_train.shape[0], \            "the size of X_train must be equal to the size of y_train"
            assert self.k <= X_train.shape[0], \            "the size of X_train must be at least k"
            self._X_train = X_train
            self._y_train = y_train        return self    def predict(self,X_predict):
            """给定待预测数据集X_predict,返回表示X_predict结果的向量"""
            assert self._X_train is not None and self._y_train is not None, \            "must fit before predict!"
            assert X_predict.shape[1] == self._X_train.shape[1], \            "the feature number of X_predict must be equal to X_train"
            y_predict = [self._predict(x) for x in X_predict]        return np.array(y_predict)    def _predict(self, x):
            distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
            nearest = np.argsort(distances)
            topK_y = [self._y_train[i] for i in nearest]
            votes = Counter(topK_y)        return votes.most_common(1)[0][0]    def __repr__(self):
            return "kNN(k=%d)" % self.k
    

    当我们写完定义好自己的kNN代码之后,可以在jupyter notebook中使用魔法命令进行调用:

    %run myAlgorithm/kNN.py
    
    knn_clf = kNNClassifier(k=6)
    knn_clf.fit(X_train, y_train)
    X_predict = x.reshape(1,-1)
    y_predict = knn_clf.predict(X_predict)
    y_predict
    
    输出:array([1])
    

    现在我们就完成了一个sklearn风格的kNN算法,但是实际上,sklearn封装的算法比我们实现的要复杂得多。

    image

    sklearn中的kNN

    代码

    对于机器学习来说,其流程是:训练数据集 -> 机器学习算法 -fit-> 模型 输入样例 -> 模型 -predict-> 输出结果

    我们之前说过,kNN算法没有模型,模型其实就是训练数据集,predict的过程就是求k近邻的过程。

    我们使用sklearn中已经封装好的kNN库。你可以看到使用有多么简单。

    from sklearn.neighbors import KNeighborsClassifier# 创建kNN_classifier实例kNN_classifier = KNeighborsClassifier(n_neighbors=6)# kNN_classifier做一遍fit(拟合)的过程,没有返回值,模型就存储在kNN_classifier实例中kNN_classifier.fit(X_train, y_train)# kNN进行预测predict,需要传入一个矩阵,而不能是一个数组。reshape()成一个二维数组,第一个参数是1表示只有一个数据,第二个参数-1,numpy自动决定第二维度有多少y_predict = kNN_classifier.predict(x.reshape(1,-1))
    y_predict
    
    输出:array([1])
    

    kNN_classifier.fit(X_train, y_train)这行代码后其实会有一个输出:

    KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
               metric_params=None, n_jobs=1, n_neighbors=6, p=2,
               weights='uniform')
    

    参数

    class
    sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=None, **kwargs)
    

    我们研究一下参数:

    • n_neighbors: int, 可选参数(默认为 5)。用于kneighbors查询的默认邻居的数量

    • weights(权重): str or callable(自定义类型), 可选参数(默认为 ‘uniform’)。用于预测的权重参数,可选参数如下:

    • uniform : 统一的权重. 在每一个邻居区域里的点的权重都是一样的。

    • distance : 权重点等于他们距离的倒数。
      使用此函数,更近的邻居对于所预测的点的影响更大。

    • [callable] : 一个用户自定义的方法,此方法接收一个距离的数组,然后返回一个相同形状并且包含权重的数组。

    • algorithm(算法): {‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 可选参数(默认为 ‘auto’)。计算最近邻居用的算法:

    • ball_tree 使用算法BallTree

    • kd_tree 使用算法KDTree

    • brute 使用暴力搜索

    • auto 会基于传入fit方法的内容,选择最合适的算法。
      注意 : 如果传入fit方法的输入是稀疏的,将会重载参数设置,直接使用暴力搜索。

    • leaf_size(叶子数量): int, 可选参数(默认为 30)。传入BallTree或者KDTree算法的叶子数量。此参数会影响构建、查询BallTree或者KDTree的速度,以及存储BallTree或者KDTree所需要的内存大小。此可选参数根据是否是问题所需选择性使用。

    • p: integer, 可选参数(默认为 2)。用于Minkowski metric(闵可夫斯基空间)的超参数。p = 1, 相当于使用曼哈顿距离,p = 2, 相当于使用欧几里得距离],对于任何 p ,使用的是闵可夫斯基空间。

    • metric(矩阵): string or callable, 默认为 ‘minkowski’。用于树的距离矩阵。默认为闵可夫斯基空间,如果和p=2一块使用相当于使用标准欧几里得矩阵. 所有可用的矩阵列表请查询 DistanceMetric 的文档。

    • metric_params(矩阵参数): dict, 可选参数(默认为 None)。给矩阵方法使用的其他的关键词参数。

    • n_jobs: int, 可选参数(默认为 1)。用于搜索邻居的,可并行运行的任务数量。如果为-1, 任务数量设置为CPU核的数量。不会影响fit

    方法

    对于KNeighborsClassifier的方法:

    方法名含义fit(X, y)使用X作为训练数据,y作为目标值(类似于标签)来拟合模型。get_params([deep])获取估值器的参数。neighbors([X, n_neighbors, return_distance])查找一个或几个点的K个邻居。kneighbors_graph([X, n_neighbors, mode])计算在X数组中每个点的k邻居的(权重)图。predict(X)给提供的数据预测对应的标签。predict_proba(X)返回测试数据X的概率估值。score(X, y[, sample_weight])返回给定测试数据和标签的平均准确值。set_params(**params)设置估值器的参数。

    0xFF 总结

    在本文中我们了解了第一个ML算法kNN,kNN凭借着自己朴素成熟的特点成为机器学习的敲门砖。

    然后我们学习了kNN算法的流程,并且在jupyter notebook上手动实现了代码,并且在外部也进行了封装。最后我们学习了sklearn中的kNN算法。

    虽然我们自己实现了一个机器学习算法,但是它的效果怎样样?预测准确率高不高?我们在机器学习过程中还有哪些需要注意的问题呢?

    且听下回分解。


    搜索进入小程序,可解锁更多精彩资讯和优质内容,不要错过哟!

    相关文章

      网友评论

        本文标题:机器学习的敲门砖:kNN算法(上)

        本文链接:https://www.haomeiwen.com/subject/jrkwuctx.html