来源:人人都是产品经理网站
用户画像首先是基于业务模型的。业务部门连业务模型都没有想好,数据部门只能巧妇难为无米之炊。数据部门也别关门造车,这和做产品一样,连用户需求都没有理解透彻,匆匆忙忙上线一个APP,结果无人问津。
理解消费者的决策,考虑业务场景,考虑业务形态,考虑业务部门的需求…这些概念说得很虚,但是一个好的用户画像离不开它们。本文没有说数据、模型和算法,是我认为,它们比技术层面更重要。
我们从一个故事开始设立用户画像吧。
老王是一家互联网创业公司的核心人员,产品主营绿色健康沙拉,老王和绿色比较搭嘛。这家公司推出了APP专卖各式各样的沙拉,现在需要建立用户画像指导运营。
公司现阶段在业务层面,更关注营销和销售:如何将沙拉卖得更好。下图是老王简单梳理的运营流程。
老王将顾客按是否购买过沙拉,划分成潜在用户和新客。潜在用户是注册过APP但还没有下单,新客是只购买过一次沙拉的用户,除此以外还有老客,即消费了两次及以上的人群。
用户画像的架构
不同业务的画像标签体系并不一致,这需要数据和运营目的性的提炼。
用户画像一般按业务属性划分多个类别模块。除了常见的人口统计,社会属性外。还有用户消费画像,用户行为画像,用户兴趣画像等。具体的画像得看产品形态,像金融领域,还会有风险画像,包括征信、违约、洗钱、还款能力、保险黑名单等。电商领域会有商品的类目偏好、品类偏好、品牌偏好,不一而足。
上图是随手画的的例子,画一个架构不难,难得是了解每个标签背后的业务逻辑和落地方式,至于算法,又能单独扯很多文章了。
从数据流向和加工看,用户画像包含上下级递进关系。
以上文的流失系数举例,它通过建模,其依赖于用户早期的历史行为。而用户早期的历史行为,即10天内的消费金额、消费次数、登录次数等,本身也是一个标签,它们是通过原始的明细数据获得。
上图列举了标签加工和计算的过程,很好理解。最上层的策略标签,是针对业务的落地,运营人员通过多个标签的组合形成一个用户群组,方便执行。
公司越大,用户画像越复杂。某家主打内容分发的公司进入了全新的视频领域,现在有两款APP,那么用户画像的结构也需要改变。既有内容相关的标签,也有视频相关的标签,两者是并行且关联的。
比如A用户在内容标签下是重度使用,而在视频标签下是轻度。比如B用户很久没打开内容APP有流失风险,但在视频APP的使用时长上看很忠诚。如此种种,看的是灵活应用。当然,姓名性别这类人口统计标签,是通用的。
用户画像作为平台级的应用,很多运营策略及工具,都是在其基础上构建的。
基于营销和消费相关的标签,新客、老客、用户的流失和忠诚、用户的消费水平和频率等,都是构成CRM(客户关系管理)的基础,可能大家更习惯叫它用户/会员管理运营平台。
它的作用在于,将数据化的标签,转换成产品运营策略。不同的标签对应不同的用户群体,也对应不同的营销手段。CRM的结构中会包含各类触达用户的常用渠道比如短信、邮件、推送等。也包含CMS(内容管理系统),执行人员通过其快速配置活动页、活动通道、优惠券等,靠营销活动拉动数据。
老王的沙拉业务要是做大,那么运营平台就会以图中的结构搭建。老王在CRM中组合标签,新客老客流失客的数据借助BI监控,然后通过CMS系统配置红包啊优惠券啊等等,再通过短或Push触达。
好的用户画像系统,既是数据生态体系,也是业务和运营的生态体系,它是一门复杂的交叉领域。因为篇幅有限,算法,数据产品没有更多的涉及,以后有机会再讲吧。核心思想希望大家能吃透。若有吐槽和疑问欢迎留言。
网友评论