美文网首页
tflearn的VocabularyProcessor用法:建立

tflearn的VocabularyProcessor用法:建立

作者: yousa_ | 来源:发表于2019-10-10 01:05 被阅读0次

    -- coding: utf-8 --

    from hanziconv import HanziConv
    from jieba import cut
    from tflearn.data_utils import VocabularyProcessor

    DOCUMENTS = [
    '这是一条测试1',
    '这是一条测试2',
    '这是一条测试3',
    '这是其他测试',
    ]

    def chinese_tokenizer(documents):
    """
    把中文文本转为词序列
    """

    for document in documents:
        # 繁体转简体
        text = HanziConv.toSimplified(document)
        # 英文转小写
        text = text.lower()
        # 分词
        yield list(cut(text))
    

    序列长度填充或截取到100,删除词频<=2的词

    vocab = VocabularyProcessor(100, 2, tokenizer_fn=chinese_tokenizer)

    创建词汇表,创建后不能更改

    vocab.fit(DOCUMENTS)

    保存和加载词汇表

    vocab.save('vocab.pickle')
    vocab = VocabularyProcessor.restore('vocab.pickle')

    文本转为词ID序列,未知或填充用的词ID为0

    id_documents = list(vocab.transform(DOCUMENTS))
    for id_document in id_documents:
    print(id_document)

    [2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

    [2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

    [2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

    [2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

    词ID序列转为文本

    for document in vocab.reverse(id_documents):
    print(document)

    这是 一条 测试 <UNK> <UNK> <UNK> ...

    这是 一条 测试 <UNK> <UNK> <UNK> ...

    这是 一条 测试 <UNK> <UNK> <UNK> ...

    这是 <UNK> 测试 <UNK> <UNK> <UNK> ...

    相关文章

      网友评论

          本文标题:tflearn的VocabularyProcessor用法:建立

          本文链接:https://www.haomeiwen.com/subject/jrnnpctx.html