美文网首页
8. 模型的选择与调优

8. 模型的选择与调优

作者: 马路仔 | 来源:发表于2019-10-02 16:11 被阅读0次
    1. 交叉验证
    2. 网格搜索

    交叉验证:为了让备评估的模型更加确信准确

    交叉验证的过程:将拿到的训练时据,分为训练集和验证集,以下图为例,将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组不同的模型结果,取平均值做为最终结果,又称5折交叉验证。 image.png

    *超参数搜索-网格搜索:

    网格搜索:通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的k值),这种叫超参数。但是手动过程复杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型

    image.png

    超参数搜索-网格搜索API

    sklearn.model_selection.GridSearchCV
    sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
    •对估计器的指定参数值进行详尽搜索

    •estimator:估计器对象
    •param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
    •cv:指定几折交叉验证
    •fit:输入训练数据
    •score:准确率
    结果分析:
    •best_score_:在交叉验证中测试的最好结果
    •best_estimator_:最好的参数模型
    •cv_results_:每次交叉验证后的验证集准确率结果和训练集准确率结果

    相关文章

      网友评论

          本文标题:8. 模型的选择与调优

          本文链接:https://www.haomeiwen.com/subject/jrwuyctx.html