美文网首页
tf.keras搭建神经网络八股

tf.keras搭建神经网络八股

作者: 原上的小木屋 | 来源:发表于2020-09-24 11:34 被阅读0次

    tf.keras搭建神经网络八股

    import

    mnist=tf.keras.datasets.mnist
    (x_train,y_train),(x_test,y_test)=mnist.load_data()
    

    train,test

    Sequential/class

    model.compile

    model.fit

    model.summary

    神经网络八股功能扩展

    1. 自制数据集,解决本领域应用
    2. 数据增强,扩充数据集
    3. 断点续训,存储模型
    4. 参数提取,把参数存入文本
    5. acc/loss可视化,查看训练效果
    6. 应用程序,给图识物
    import tensorflow as tf
    mnist=tf.keras.datasets.mnist
    (x_train,y_train),(x_test,y_test)=mnist.load_data()
    x_train,x_test=x_train/255.0,x_test/255.0
    
    model= tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128,activation='relu'),
        tf.keras.layers.Dense(10,activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train,y_train,batch_size=32,epochs=5,validation_data=(x_test,y_test),validation_freq=1)
    model.summary()
    
    Epoch 1/5
    1875/1875 [==============================] - 4s 2ms/step - loss: 0.2575 - sparse_categorical_accuracy: 0.9258 - val_loss: 0.1434 - val_sparse_categorical_accuracy: 0.9566
    Epoch 2/5
    1875/1875 [==============================] - 4s 2ms/step - loss: 0.1148 - sparse_categorical_accuracy: 0.9666 - val_loss: 0.0990 - val_sparse_categorical_accuracy: 0.9694
    Epoch 3/5
    1875/1875 [==============================] - 7s 4ms/step - loss: 0.0805 - sparse_categorical_accuracy: 0.9761 - val_loss: 0.0834 - val_sparse_categorical_accuracy: 0.9741
    Epoch 4/5
    1875/1875 [==============================] - 4s 2ms/step - loss: 0.0585 - sparse_categorical_accuracy: 0.9820 - val_loss: 0.0806 - val_sparse_categorical_accuracy: 0.9738
    Epoch 5/5
    1875/1875 [==============================] - 4s 2ms/step - loss: 0.0457 - sparse_categorical_accuracy: 0.9858 - val_loss: 0.0752 - val_sparse_categorical_accuracy: 0.9755
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    flatten (Flatten)            multiple                  0         
    _________________________________________________________________
    dense (Dense)                multiple                  100480    
    _________________________________________________________________
    dense_1 (Dense)              multiple                  1290      
    =================================================================
    Total params: 101,770
    Trainable params: 101,770
    Non-trainable params: 0
    _________________________________________________________________
    

    自制数据集

    import tensorflow as tf
    from PIL import Image
    import numpy as np
    import os
    
    train_path = './mnist_image_label/mnist_train_jpg_60000/'
    train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'
    x_train_savepath = './mnist_image_label/mnist_x_train.npy'
    y_train_savepath = './mnist_image_label/mnist_y_train.npy'
    
    test_path = './mnist_image_label/mnist_test_jpg_10000/'
    test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'
    x_test_savepath = './mnist_image_label/mnist_x_test.npy'
    y_test_savepath = './mnist_image_label/mnist_y_test.npy'
    
    
    def generateds(path, txt):
        f = open(txt, 'r')  # 以只读形式打开txt文件
        contents = f.readlines()  # 读取文件中所有行
        f.close()  # 关闭txt文件
        x, y_ = [], []  # 建立空列表
        for content in contents:  # 逐行取出
            value = content.split()  # 以空格分开,图片路径为value[0] , 标签为value[1] , 存入列表
            img_path = path + value[0]  # 拼出图片路径和文件名
            img = Image.open(img_path)  # 读入图片
            img = np.array(img.convert('L'))  # 图片变为8位宽灰度值的np.array格式
            img = img / 255.  # 数据归一化 (实现预处理)
            x.append(img)  # 归一化后的数据,贴到列表x
            y_.append(value[1])  # 标签贴到列表y_
            print('loading : ' + content)  # 打印状态提示
    
        x = np.array(x)  # 变为np.array格式
        y_ = np.array(y_)  # 变为np.array格式
        y_ = y_.astype(np.int64)  # 变为64位整型
        return x, y_  # 返回输入特征x,返回标签y_
    
    
    if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath) and os.path.exists(
            x_test_savepath) and os.path.exists(y_test_savepath):
        print('-------------Load Datasets-----------------')
        x_train_save = np.load(x_train_savepath)
        y_train = np.load(y_train_savepath)
        x_test_save = np.load(x_test_savepath)
        y_test = np.load(y_test_savepath)
        x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
        x_test = np.reshape(x_test_save, (len(x_test_save), 28, 28))
    else:
        print('-------------Generate Datasets-----------------')
        x_train, y_train = generateds(train_path, train_txt)
        x_test, y_test = generateds(test_path, test_txt)
    
        print('-------------Save Datasets-----------------')
        x_train_save = np.reshape(x_train, (len(x_train), -1))
        x_test_save = np.reshape(x_test, (len(x_test), -1))
        np.save(x_train_savepath, x_train_save)
        np.save(y_train_savepath, y_train)
        np.save(x_test_savepath, x_test_save)
        np.save(y_test_savepath, y_test)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
    model.summary()
    

    数据增强(增大数据量)

    image_gen_train=tf.keras.preprocessing.image.ImageDataGenerator(
        rescale=所有数据将乘以该数值
        rotation_range=随机旋转角度数范围
        width_shift_range=随机宽度偏移量
        height_shift_range=随机高度偏移量
        水平翻转:horizontal_flip=是否随机水平反转
        随即收缩:zoom_range=随机缩放的范围[1-n,1+n])
    

    image_gen_train.fit(x_train)

    举个粒子

    image_gen_train = ImageDataGenerator(
        rescale=1./1.,#如为图像,分母为255时,可归一至0-1
        rotation_range=45,#随机45度旋转
        width_shift_range=.15,#宽度偏移
        height_shift_range=.15,#高度偏移
        horizontal_flip=False,#水平反转
        zoom_range=0.5 #将图像随机缩放阈值50%)
    image_gen_train.fit(x_train)
    
    import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,从(60000, 28, 28)reshape为(60000, 28, 28, 1)
    
    image_gen_train = ImageDataGenerator(
        rescale=1. / 1.,  # 如为图像,分母为255时,可归至0~1
        rotation_range=45,  # 随机45度旋转
        width_shift_range=.15,  # 宽度偏移
        height_shift_range=.15,  # 高度偏移
        horizontal_flip=False,  # 水平翻转
        zoom_range=0.5  # 将图像随机缩放阈量50%
    )
    image_gen_train.fit(x_train)
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    model.fit(image_gen_train.flow(x_train, y_train, batch_size=32), epochs=5, validation_data=(x_test, y_test),
              validation_freq=1)
    model.summary()
    

    断点续训

    1. 读取模型先定义出模型存放的路径和文件名,model.load_weights(checkpoint_save_path)
    2. 保存模型
    tf.keras.callbacks.ModelCheckpoint(
        filepath=路径文件名,
        save_weights_only=True/False,
        save_best_only=True/False)
    history=model.fit(callbacks=[cp_callback])
    
    #加入断点续训后的完整代码
    import tensorflow as tf
    import os
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    

    参数提取,把参数存入文本

    model.trainable_variables返回模型中可训练的参数

    • 设置print输出格式
      np.set_printoptions(threshold=超过多少省略显示)
      np.set_printoptions(threshold=np.inf)#np.inf表示无限大
    print(model.trainable_variables)
    file=open('./weights.txt',w)
    for v in model.trainable_variables:
        file.write(str(v.name)+'\n')
        file.write(str(v.shape)+'\n')
        file.write(str(v.numpy())+'\n')
    file.close()
    
    import tensorflow as tf
    import os
    import numpy as np
    np.set_printoptions(threshold=np.inf)
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    

    acc/loss可视化,查看训练效果

    history=model.fit(训练集数据,训练集标签,batch_size=,epochs=,validation_split=用作测试数据的比例,validation_data=测试集,validation_freq=测试频率)

    • history:
    1. 训练集loss: loss
    2. 测试集loss: val_loss
    3. 训练集准确率: sparse_categorical_accurary
    4. 测试集准确率: val_sparse_categorical_accurary
    acc=history.history['sparse_categorical_accurary']
    val_acc=history.history['val_sparse_categorical_accurary']
    loss=history.history['loss']
    val_loss=history.history['val_loss']
    
    import tensorflow as tf
    import os
    import numpy as np
    from matplotlib import pyplot as plt
    
    np.set_printoptions(threshold=np.inf)
    
    mnist = tf.keras.datasets.mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/mnist.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    
    print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '\n')
        file.write(str(v.shape) + '\n')
        file.write(str(v.numpy()) + '\n')
    file.close()
    
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()
    

    应用程序,给图识物

    • 前向传播执行应用predict(输入特征,batch_size=整数),返回前向传播计算结果

    复现模型(前向传播)

    model=tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128,activation='relu'),
        tf.keras.layers.Dense(10,activation='softmax')
    ])
    

    加载参数model.load_weights(model_save_path)

    预测结果result=model.predict(x_predict)

    from PIL import Image
    import numpy as np
    import tensorflow as tf
    
    model_save_path = './checkpoint/mnist.ckpt'
    
    model = tf.keras.models.Sequential([
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(128, activation='relu'),
        tf.keras.layers.Dense(10, activation='softmax')])
    
    model.load_weights(model_save_path)
    
    preNum = int(input("input the number of test pictures:"))
    
    for i in range(preNum):
        image_path = input("the path of test picture:")
        img = Image.open(image_path)
        img = img.resize((28, 28), Image.ANTIALIAS)
        img_arr = np.array(img.convert('L'))
    
        for i in range(28):
            for j in range(28):
                if img_arr[i][j] < 200:
                    img_arr[i][j] = 255
                else:
                    img_arr[i][j] = 0
    
        img_arr = img_arr / 255.0
        x_predict = img_arr[tf.newaxis, ...]
        result = model.predict(x_predict)
    
        pred = tf.argmax(result, axis=1)
    
        print('\n')
        tf.print(pred)
    

    相关文章

      网友评论

          本文标题:tf.keras搭建神经网络八股

          本文链接:https://www.haomeiwen.com/subject/jsyzyktx.html