美文网首页
算法-leetcode-数组-88. 合并两个有序数组

算法-leetcode-数组-88. 合并两个有序数组

作者: yufw | 来源:发表于2020-05-01 20:51 被阅读0次

    题目: 88. 合并两个有序数组

    题目说明

    给你两个有序整数数组 nums1 和 nums2,请你将 nums2 合并到 nums1 中,使 nums1 成为一个有序数组。

    说明:

    初始化 nums1 和 nums2 的元素数量分别为 m 和 n 。
    你可以假设 nums1 有足够的空间(空间大小大于或等于 m + n)来保存 nums2 中的元素。

    示例:

    输入:
    nums1 = [1,2,3,0,0,0], m = 3
    nums2 = [2,5,6],       n = 3
    
    输出: [1,2,2,3,5,6]
    
    解题思路:
    1. 合并两个数组
    2. 对合并的数组进行排序
    源码:
    class Solution {
        public void merge(int[] nums1, int m, int[] nums2, int n) {
            System.arraycopy(nums2,0,nums1,m,n);
            Arrays.sort(nums1);
        }
    }
    
    
    
    System.arraycopy()的源码见下
    /**
         * @param      src      the source array.
         * @param      srcPos   starting position in the source array.
         * @param      dest     the destination array.
         * @param      destPos  starting position in the destination data.
         * @param      length   the number of array elements to be copied.
         * @throws     IndexOutOfBoundsException  if copying would cause
         *             access of data outside array bounds.
         * @throws     ArrayStoreException  if an element in the {@code src}
         *             array could not be stored into the {@code dest} array
         *             because of a type mismatch.
         * @throws     NullPointerException if either {@code src} or
         *             {@code dest} is {@code null}.
         */
    @HotSpotIntrinsicCandidate
    public static native void arraycopy(Object src,  int  srcPos,
                                        Object dest, int destPos,
                                        int length);
    
    Arrays.sort() 源码
    /**
         * Sorts the specified array into ascending numerical order.
         *
         * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
         * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
         * offers O(n log(n)) performance on many data sets that cause other
         * quicksorts to degrade to quadratic performance, and is typically
         * faster than traditional (one-pivot) Quicksort implementations.
         *
         * @param a the array to be sorted
         */
    public static void sort(int[] a) {
        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
    }
    
    
    
    Class DualPivotQuicksort {
        
        // ....省略..
        
        
        /**
         * The maximum number of runs in merge sort.
         */
        private static final int MAX_RUN_COUNT = 67;
        
        /**
         * If the length of an array to be sorted is less than this
         * constant, Quicksort is used in preference to merge sort.
         */
        private static final int QUICKSORT_THRESHOLD = 286;
        
        
    /**
         * Sorts the specified range of the array using the given
         * workspace array slice if possible for merging
         *
         * @param a the array to be sorted
         * @param left the index of the first element, inclusive, to be sorted
         * @param right the index of the last element, inclusive, to be sorted
         * @param work a workspace array (slice)
         * @param workBase origin of usable space in work array
         * @param workLen usable size of work array
         */
        static void sort(int[] a, int left, int right,
                         int[] work, int workBase, int workLen) {
            // Use Quicksort on small arrays
            if (right - left < QUICKSORT_THRESHOLD) {
                sort(a, left, right, true);
                return;
            }
    
            /*
             * Index run[i] is the start of i-th run
             * (ascending or descending sequence).
             */
            int[] run = new int[MAX_RUN_COUNT + 1];
            int count = 0; run[0] = left;
    
            // Check if the array is nearly sorted
            for (int k = left; k < right; run[count] = k) {
                // Equal items in the beginning of the sequence
                while (k < right && a[k] == a[k + 1])
                    k++;
                if (k == right) break;  // Sequence finishes with equal items
                if (a[k] < a[k + 1]) { // ascending
                    while (++k <= right && a[k - 1] <= a[k]);
                } else if (a[k] > a[k + 1]) { // descending
                    while (++k <= right && a[k - 1] >= a[k]);
                    // Transform into an ascending sequence
                    for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
                        int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
                    }
                }
    
                // Merge a transformed descending sequence followed by an
                // ascending sequence
                if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
                    count--;
                }
    
                /*
                 * The array is not highly structured,
                 * use Quicksort instead of merge sort.
                 */
                if (++count == MAX_RUN_COUNT) {
                    sort(a, left, right, true);
                    return;
                }
            }
    
            // These invariants should hold true:
            //    run[0] = 0
            //    run[<last>] = right + 1; (terminator)
    
            if (count == 0) {
                // A single equal run
                return;
            } else if (count == 1 && run[count] > right) {
                // Either a single ascending or a transformed descending run.
                // Always check that a final run is a proper terminator, otherwise
                // we have an unterminated trailing run, to handle downstream.
                return;
            }
            right++;
            if (run[count] < right) {
                // Corner case: the final run is not a terminator. This may happen
                // if a final run is an equals run, or there is a single-element run
                // at the end. Fix up by adding a proper terminator at the end.
                // Note that we terminate with (right + 1), incremented earlier.
                run[++count] = right;
            }
    
            // Determine alternation base for merge
            byte odd = 0;
            for (int n = 1; (n <<= 1) < count; odd ^= 1);
    
            // Use or create temporary array b for merging
            int[] b;                 // temp array; alternates with a
            int ao, bo;              // array offsets from 'left'
            int blen = right - left; // space needed for b
            if (work == null || workLen < blen || workBase + blen > work.length) {
                work = new int[blen];
                workBase = 0;
            }
            if (odd == 0) {
                System.arraycopy(a, left, work, workBase, blen);
                b = a;
                bo = 0;
                a = work;
                ao = workBase - left;
            } else {
                b = work;
                ao = 0;
                bo = workBase - left;
            }
    
            // Merging
            for (int last; count > 1; count = last) {
                for (int k = (last = 0) + 2; k <= count; k += 2) {
                    int hi = run[k], mi = run[k - 1];
                    for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
                        if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
                            b[i + bo] = a[p++ + ao];
                        } else {
                            b[i + bo] = a[q++ + ao];
                        }
                    }
                    run[++last] = hi;
                }
                if ((count & 1) != 0) {
                    for (int i = right, lo = run[count - 1]; --i >= lo;
                        b[i + bo] = a[i + ao]
                    );
                    run[++last] = right;
                }
                int[] t = a; a = b; b = t;
                int o = ao; ao = bo; bo = o;
            }
        }
        
        // ....省略..
        
    }
    

    个人水平有限,如有问题,请各路大神指教,虚心接纳

    如果觉得有帮助,请点赞收藏,谢谢

    相关文章

      网友评论

          本文标题:算法-leetcode-数组-88. 合并两个有序数组

          本文链接:https://www.haomeiwen.com/subject/jvccghtx.html