美文网首页
技术图文:如何利用C# 实现 Kruskal 最小生成树算法?

技术图文:如何利用C# 实现 Kruskal 最小生成树算法?

作者: 老马的程序人生 | 来源:发表于2019-06-11 19:40 被阅读0次

    背景

    以前我写过一些图文来介绍有关数据结构与算法的知识:

    本次,向大家介绍图论中构造最小生成树的 Kruskal 算法。


    技术分析

    Kruskal 算法:

    Krusal算法

    例子:

    在这里插入图片描述

    该例子演示了一个含有6个结点,10条边的连通网,通过 Kruskal 算法逐步演化为含有6个结点,5条边的连通子网的过程,即构造最小生成树的过程。


    代码实现

    Step1 构造边表结点的结构 EdgeNode

    public class EdgeNode
    {
        /// <summary>
        /// 获取边终点在顶点数组中的位置
        /// </summary>
        public int Index { get; }
    
        /// <summary>
        /// 获取边上的权值
        /// </summary>
        public double Weight { get; }
    
        /// <summary>
        /// 获取或设置下一个邻接点
        /// </summary>
        public EdgeNode Next { get; set; }
    
        /// <summary>
        /// 初始化EdgeNode类的新实例
        /// </summary>
        /// <param name="index">边终点在顶点数组中的位置</param>
        /// <param name="weight">边上的权值</param>
        /// <param name="next">下一个邻接点</param>
        public EdgeNode(int index, double weight = 0.0, EdgeNode next = null)
        {
            if (index < 0)
                throw new ArgumentOutOfRangeException();
    
            Index = index;
            Weight = weight;
            Next = next;
        }
    }
    

    Step2 构造顶点表结点的结构 VertexNode

    public class VertexNode
    {
        /// <summary>
        /// 获取或设置顶点的名字
        /// </summary>
        public string VertexName { get; set; }
    
        /// <summary>
        /// 获取或设置顶点是否被访问
        /// </summary>
        public bool Visited { get; set; }
    
        /// <summary>
        /// 获取或设置顶点的第一个邻接点
        /// </summary>
        public EdgeNode FirstNode { get; set; }
    
        /// <summary>
        /// 初始化VertexNode类的新实例
        /// </summary>
        /// <param name="vName">顶点的名字</param>
        /// <param name="firstNode">顶点的第一个邻接点</param>
        public VertexNode(string vName, EdgeNode firstNode = null)
        {
            VertexName = vName;
            Visited = false;
            FirstNode = firstNode;
        }
    }
    

    Step3 构造利用邻接表存储图的结构AdGraph

    通过 AdGraph 的索引器可以为顶点表赋值,通过 AddEdge 方法可以为边表赋值。

    public class AdGraph
    {
        private readonly VertexNode[] _vertexList; //结点表
    
        /// <summary>
        /// 获取图的结点数
        /// </summary>
        public int VertexCount { get; }
    
        /// <summary>
        /// 初始化AdGraph类的新实例
        /// </summary>
        /// <param name="vCount">图中结点的个数</param>
        public AdGraph(int vCount)
        {
            if (vCount <= 0)
                throw new ArgumentOutOfRangeException();
    
            VertexCount = vCount;
            _vertexList = new VertexNode[vCount];
        }
    
        /// <summary>
        /// 获取或设置图中各结点的名称
        /// </summary>
        /// <param name="index">结点名称从零开始的索引</param>
        /// <returns>指定索引处结点的名称</returns>
        public string this[int index]
        {
            get
            {
                if (index < 0 || index > VertexCount - 1)
                    throw new ArgumentOutOfRangeException();
    
                return _vertexList[index] == null
                    ? "NULL"
                    : _vertexList[index].VertexName;
            }
            set
            {
                if (index < 0 || index > VertexCount - 1)
                    throw new ArgumentOutOfRangeException();
    
                if (_vertexList[index] == null)
                    _vertexList[index] = new VertexNode(value);
                else
                    _vertexList[index].VertexName = value;
            }
        }
    
        /// <summary>
        /// 得到结点在结点表中的位置
        /// </summary>
        /// <param name="vertexName">结点的名称</param>
        /// <returns>结点的位置</returns>
        private int GetIndex(string vertexName)
        {
            int i;
            for (i = 0; i < VertexCount; i++)
            {
                if (_vertexList[i] != null && _vertexList[i].VertexName == vertexName)
                    break;
            }
            return i == VertexCount ? -1 : i;
        }
    
        /// <summary>
        /// 给图加边
        /// </summary>
        /// <param name="startVertexName">起始结点的名字</param>
        /// <param name="endVertexName">终止结点的名字</param>
        /// <param name="weight">边上的权值</param>
        public void AddEdge(string startVertexName, string endVertexName
            , double weight = 0.0)
        {
            int i = GetIndex(startVertexName);
            int j = GetIndex(endVertexName);
    
            if (i == -1 || j == -1)
                throw new Exception("图中不存在该边.");
    
            EdgeNode temp = _vertexList[i].FirstNode;
            if (temp == null)
            {
                _vertexList[i].FirstNode = new EdgeNode(j, weight);
            }
            else
            {
                while (temp.Next != null)
                    temp = temp.Next;
                temp.Next = new EdgeNode(j, weight);
            }
        }
    }    
    

    上面例子对应的邻接表如下所示:

    邻接表

    Step4 构造最小生成树结点的结构 SpanTreeNode

    public class SpanTreeNode
    {
        /// <summary>
        /// 获取或设置结点本身的名称
        /// </summary>
        public string SelfName { get; }
    
        /// <summary>
        /// 获取或设置结点双亲的名称
        /// </summary>
        public string ParentName { get; }
    
        /// <summary>
        /// 获取或设置边的权值
        /// </summary>
        public double Weight { get; set; }
    
        /// <summary>
        /// 构造SpanTreeNode实例
        /// </summary>
        /// <param name="selfName">结点本身的名称</param>
        /// <param name="parentName">结点双亲的名称</param>
        /// <param name="weight">边的权值</param>
        public SpanTreeNode(string selfName, string parentName, double weight)
        {
            if (string.IsNullOrEmpty(selfName) || string.IsNullOrEmpty(parentName))
                throw new ArgumentNullException();
    
            SelfName = selfName;
            ParentName = parentName;
            Weight = weight;
        }
    }
    

    Step5 构造边的结构 Edge

    internal class Edge
    {
        /// <summary>
        /// 起点编号
        /// </summary>
        public int Begin { get;}
    
        /// <summary>
        /// 终点编号
        /// </summary>
        public int End { get; }
    
        /// <summary>
        /// 权值
        /// </summary>
        public double Weight { get; }
    
        /// <summary>
        /// 创建一个 Edge 类的新实例
        /// </summary>
        /// <param name="begin">起点编号</param>
        /// <param name="end">终点编号</param>
        /// <param name="weight">权值</param>
    
        public Edge(int begin, int end, double weight = 0.0)
        {
            Begin = begin;
            End = end;
            Weight = weight;
        }
    }
    

    Step6 获取边集合的方法 GetEdges

    private Edge[] GetEdges()
    {
        for (int i = 0; i < VertexCount; i++)
            _vertexList[i].Visited = false;
    
        List<Edge> result = new List<Edge>();
    
        for (int i = 0; i < VertexCount; i++)
        {
            _vertexList[i].Visited = true;
            EdgeNode p = _vertexList[i].FirstNode;
            while (p != null)
            {
                if (_vertexList[p.Index].Visited == false)
                {
                    Edge edge = new Edge(i, p.Index, p.Weight);
                    result.Add(edge);
                }
                p = p.Next;
            }
        }
        return result.OrderBy(a => a.Weight).ToArray();
    }
    

    上面例子对应的边的集合如下所示:

    Step7 获取最小生成树的 Kruskal 算法。

    private int Find(int[] parent, int f)
    {
        while (parent[f] > 0)
            f = parent[f];
        return f;
    }
    
    /// <summary>
    /// 克鲁斯卡尔算法 最小生成树
    /// </summary>
    /// <returns></returns>
    public SpanTreeNode[] MiniSpanTree()
    {
        int[] parent = new int[VertexCount];
        for (int i = 0; i < VertexCount; i++)
        {
            parent[i] = 0;
        }
        SpanTreeNode[] tree = new SpanTreeNode[VertexCount];
        int count = 0;
        Edge[] edges = GetEdges();
    
        for (int i = 0; i < edges.Length; i++)
        {
            int begin = edges[i].Begin;
            int end = edges[i].End;
            int n = Find(parent, begin);
            int m = Find(parent, end);
            if (n != m)
            {
                if (i == 0)
                {
                    tree[count] = new SpanTreeNode(_vertexList[begin].VertexName, "NULL", 0.0);
                    count++;
                }
                parent[n] = m;
                tree[count] = new SpanTreeNode(_vertexList[end].VertexName,
                    _vertexList[begin].VertexName, edges[i].Weight);
                count++;
            }
        }
        return tree;
    }
    

    总结

    到此为止代码部分就全部介绍完了,我们来看一下上面例子的应用。

    static void Main(string[] args)
    {
        AdGraph alg = new AdGraph(6);
        alg[0] = "V0";
        alg[1] = "V1";
        alg[2] = "V2";
        alg[3] = "V3";
        alg[4] = "V4";
        alg[5] = "V5";
        alg.AddEdge("V0", "V1", 6);
        alg.AddEdge("V0", "V2", 1);
        alg.AddEdge("V0", "V3", 5);
        alg.AddEdge("V1", "V0", 6);
        alg.AddEdge("V1", "V2", 5);
        alg.AddEdge("V1", "V4", 3);
        alg.AddEdge("V2", "V0", 1);
        alg.AddEdge("V2", "V1", 5);
        alg.AddEdge("V2", "V3", 7);
        alg.AddEdge("V2", "V4", 5);
        alg.AddEdge("V2", "V5", 4);
        alg.AddEdge("V3", "V0", 5);
        alg.AddEdge("V3", "V2", 7);
        alg.AddEdge("V3", "V5", 2);
        alg.AddEdge("V4", "V1", 3);
        alg.AddEdge("V4", "V2", 5);
        alg.AddEdge("V4", "V5", 6);
        alg.AddEdge("V5", "V2", 4);
        alg.AddEdge("V5", "V3", 2);
        alg.AddEdge("V5", "V4", 6);
        SpanTreeNode[] tree = alg.MiniSpanTree();
        double sum = 0;
        for (int i = 0; i < tree.Length; i++)
        {
            string str = "(" + tree[i].ParentName + ","
                    + tree[i].SelfName + ") Weight:"
                    + tree[i].Weight;
            Console.WriteLine(str);
            sum += tree[i].Weight;
        }
        Console.WriteLine(sum);
    }
    
    结果

    我们再通过一个例子来演示如何应用:

    地图

    上面是一幅纽约市附近的地图,对应的数据存储在 graph.txt 文件中。

    数据

    读入该文件,构造好 AdGraph 结构后,调用我们写好的 Kruskal 算法,得到的结果如下:

    结果

    是不是很有趣,今天就到这里吧!马上要放假了,我们的招新活动也即将开启,希望大家关注呦!

    See You!


    相关图文

    相关文章

      网友评论

          本文标题:技术图文:如何利用C# 实现 Kruskal 最小生成树算法?

          本文链接:https://www.haomeiwen.com/subject/jxecfctx.html