![](https://img.haomeiwen.com/i3830893/7bf62e8561c98c72.png)
Micrometer 是一个统一监控指标采集的门面,这个有点类似SLF4J,具体的指标数据采集实现有AppOptics, Azure Monitor, Atlas, CloudWatch, Datadog, Dynatrace, Elastic, Ganglia, Graphite, Humio, Influx/Telegraf, JMX, KairosDB, New Relic, Prometheus, SignalFx, Stackdriver, StatsD,Wavefront等。因此使用Micrometer时,只需更换底层实现包,应用程序无需修改任何代码即可对接到不同监控系统。
在最新SpringBoot2.0中,Micrometer门面已经整合到了spring-boot-starter-actuator项目中,我们只需引入相应的具体实现包即可对接到相应的监控系统,本次将使用promethues来监控、采集SpringBoot的指标数据。
引入promehtus依赖
implementation 'org.springframework.boot:spring-boot-starter-actuator'
runtimeOnly 'io.micrometer:micrometer-registry-prometheus'
配置指标endpoint
默认情况下指标的endpoint可以与服务同一个端口,通常为了不对业务造成干扰,使用额外的端口向外暴露指标endpoint,只需更改application.yml即可实现,如下:
management:
endpoints:
web:
exposure:
include: "*"
server:
port: 30000
浏览器访问http://localhost:30000/actuator/metrics 可以查看到目前存在监控指标,这些指标都是默认开启的。
![](https://img.haomeiwen.com/i3830893/c39776ea95b412e0.png)
使用promethues采集指标数据
目前dockerHub上未提供官方的镜像,这里还使用二进制文件的方式来进行监控数据的采集,下载完二进制包后,需修改promethues.yml文件,配置scrape_configs,详细如下:
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
scrape_interval: 5s
metrics_path: '/actuator/prometheus' #指标路径
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['127.0.0.1:30000'] #指标暴露地址端口
启动promethues
./prometheus --config.file=./prometheus.yml
使用Grafana可视化指标
这里使用docker运行grafana,默认账号密码:admin/admin
docker run -d -p 3000:3000 grafana/grafana
来到设置,准备添加数据源。
![](https://img.haomeiwen.com/i3830893/07503af3430c02b9.png)
这里选择promethues
![](https://img.haomeiwen.com/i3830893/763170b8ff956859.png)
输入 ip(ip不能填127.0.0.1 或者是localhost,局域网ip就行) 和 端口即可,点击下面的save&Test完成数据源的添加。
添加Panel,这里选之前创建的数据源,选择指标即可实现可视化。
![](https://img.haomeiwen.com/i3830893/3f188a6d156496a5.png)
监控http响应
默认已经开启了http请求的监控,但是未开启histogram
management:
endpoints:
web:
exposure:
include: "*"
server:
port: 30000
metrics:
distribution:
percentiles-histogram[http.server.requests]: true
maximum-expected-value[http.server.requests]: 10000 #预期最大值
minimum-expected-value[http.server.requests]: 1 #预期最小值
编写测试接口
@RestController
public class TestController {
@GetMapping(value = "/hello")
public String helloPromethues(){
try {
TimeUnit.MILLISECONDS.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
return "helloPromethues";
}
}
使用wrk压测该接口
wrk -t4 -c2000 -d100s http://127.0.0.1:8080/hello
在Grafana中创建Panel,指标选择http_server_requests_seconds_bucket,并修改Y轴单位为秒。
![](https://img.haomeiwen.com/i3830893/191ea50f03538926.png)
网友评论