美文网首页
TensorFlow(10)卷积神经网络CNN

TensorFlow(10)卷积神经网络CNN

作者: 操作系统 | 来源:发表于2017-08-08 06:32 被阅读0次

加载数据

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
trainbig = np.load("trainbig.npy")
labelbig = np.load("labelbig.npy")

定义参数

n_input  = 784
n_output = 10
weights  = {
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),
        'wd1': tf.Variable(tf.random_normal([7*7*128, 1024], stddev=0.1)),
        'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
    }
biases   = {
        'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
        'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
        'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
        'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
    }

创建网络

def conv_basic(_input, _w, _b, _keepratio):
        # INPUT
        _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
        # CONV LAYER 1
        _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
        #_mean, _var = tf.nn.moments(_conv1, [0, 1, 2])
        #_conv1 = tf.nn.batch_normalization(_conv1, _mean, _var, 0, 1, 0.0001)
        _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr1 = tf.nn.dropout(_pool1, _keepratio)
        # CONV LAYER 2
        _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
        #_mean, _var = tf.nn.moments(_conv2, [0, 1, 2])
        #_conv2 = tf.nn.batch_normalization(_conv2, _mean, _var, 0, 1, 0.0001)
        _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
        _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
        # VECTORIZE
        _dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
        # FULLY CONNECTED LAYER 1
        _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
        _fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
        # FULLY CONNECTED LAYER 2
        _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
        # RETURN
        out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
            'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
            'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
        }
        return out
print ("CNN READY")

定义框架

x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
keepratio = tf.placeholder(tf.float32)

# FUNCTIONS

_pred = conv_basic(x, weights, biases, keepratio)['out']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=_pred, labels=y))
optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
_corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1)) 
accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) 
init = tf.global_variables_initializer()
    
# SAVER
print ("GRAPH READY")

拟合数据,优化参数

sess = tf.Session()
sess.run(init)

training_epochs = 15
batch_size      = 16
display_step    = 1
for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(trainbig.shape[0]/batch_size)
    #total_batch = 10
    # Loop over all batches
    for i in range(total_batch):
        #batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = trainbig[batch_size*i:batch_size*(i+1),:]
        batch_ys = labelbig[batch_size*i:batch_size*(i+1)]
        # Fit training using batch data
        sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
        # Compute average loss
        avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch

    # Display logs per epoch step
    if epoch % display_step == 0: 
        print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
        train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
        print (" Training accuracy: %.3f" % (train_acc))
        #test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
        #print (" Test accuracy: %.3f" % (test_acc))

print ("OPTIMIZATION FINISHED")

输出结果

Epoch: 000/015 cost: 0.086410681
 Training accuracy: 1.000
Epoch: 001/015 cost: 0.022377000
 Training accuracy: 1.000
Epoch: 002/015 cost: 0.014488321
 Training accuracy: 1.000
Epoch: 003/015 cost: 0.010429086
 Training accuracy: 1.000
Epoch: 004/015 cost: 0.007624883
 Training accuracy: 1.000
Epoch: 005/015 cost: 0.005911986
 Training accuracy: 1.000
Epoch: 006/015 cost: 0.004762027
 Training accuracy: 1.000
Epoch: 007/015 cost: 0.004582631
 Training accuracy: 1.000
Epoch: 008/015 cost: 0.003744178
 Training accuracy: 1.000
Epoch: 009/015 cost: 0.003479448
 Training accuracy: 1.000
Epoch: 010/015 cost: 0.003006367
 Training accuracy: 1.000
Epoch: 011/015 cost: 0.002767087
 Training accuracy: 1.000
Epoch: 012/015 cost: 0.002448505
 Training accuracy: 1.000
Epoch: 013/015 cost: 0.002022317
 Training accuracy: 1.000
Epoch: 014/015 cost: 0.002517490
 Training accuracy: 1.000
OPTIMIZATION FINISHED

效果不错

相关文章

网友评论

      本文标题:TensorFlow(10)卷积神经网络CNN

      本文链接:https://www.haomeiwen.com/subject/kabzlxtx.html