美文网首页
Java线程池原理浅析

Java线程池原理浅析

作者: 丑星星 | 来源:发表于2017-05-10 17:45 被阅读0次

    一、线程池工厂Executors

    我们平时在使用线程池的时候一般都是通过Executors的newXxxxxPool()静态方法来获得不同功能的线程池对象。我们来看一下这些方法都是怎么创建线程池的:

         /**
          * 固定线程数的线程池
          */
        public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>(),
                                          threadFactory);
        }
         /**
          * 只有一个线程的线程池
          */
        public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }
         /**
          * 可变大小线程池
          */
        public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }
         /**
          *定时执行的线程池
          */
        public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
            return new ScheduledThreadPoolExecutor(corePoolSize);
        }
    

    我们可以看到这newFixedThreadPool()、newSingleThreadExecutor()、newCachedThreadPool()都是创建了一个ThreadPoolExecutor对象,而newScheduledThreadPool()则是创建了一个ScheduledThreadPoolExecutor对象,其实ScheduledThreadPoolExecutor也是继承了ThreadPoolExecutor这个类,通过在ThreadPoolExecutor上扩展实现了定时执行线程的功能。

    ThreadPoolExecutor

    我们先来看一下ThreadPoolExecutor的构造方法:

        /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
    

    corePoolSize:线程池里最小线程数
    maximumPoolSize:线程池里最大线程数
    keepAliveTime:空闲线程存活的时间,也就是线程池的线程数超过corePoolSize后,空闲线程可以存活的时间,超过这个时间就会被销毁。
    unit: keepAliveTime的单位
    workQueue:用来存放等待任务的队列。这个队列是个阻塞队列
    threadFactory:用来产生线程池里的线程的工厂
    handler:当任务超过最大允许的任务数量后,新来任务的拒绝策略。
    知道了上面几个参数,我们对ThreadPoolExecutor应该有所了解,对Executors产生的不同功能的线程池也应该有所了解。我们接下来讨论一下ThreadPoolExecutor实现线程池的原理。
    首先从提交任务的方法开始:

        /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *执行给定的任务,这个任务可能在一个新的线程里执行,也可能在一个已经存在的线程里执行
         *如果任务不能被提交,不管是因为executor被shutdown还是因为容量到达界限,任务都会被RejectedExecutionHandler(拒绝策略)处理。
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    首先看到这一行代码:int c = ctl.get(); ctl是什么呢?我们来看一下关于ctl的定义:

        /**
         * The main pool control state, ctl, is an atomic integer packing
         * two conceptual fields
         *   workerCount, indicating the effective number of threads
         *   runState,    indicating whether running, shutting down etc
         *
         * In order to pack them into one int, we limit workerCount to
         * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
         * billion) otherwise representable. If this is ever an issue in
         * the future, the variable can be changed to be an AtomicLong,
         * and the shift/mask constants below adjusted. But until the need
         * arises, this code is a bit faster and simpler using an int.
         *
         * The workerCount is the number of workers that have been
         * permitted to start and not permitted to stop.  The value may be
         * transiently different from the actual number of live threads,
         * for example when a ThreadFactory fails to create a thread when
         * asked, and when exiting threads are still performing
         * bookkeeping before terminating. The user-visible pool size is
         * reported as the current size of the workers set.
         *
         * The runState provides the main lifecycle control, taking on values:
         *
         *   RUNNING:  Accept new tasks and process queued tasks
         *   SHUTDOWN: Don't accept new tasks, but process queued tasks
         *   STOP:     Don't accept new tasks, don't process queued tasks,
         *             and interrupt in-progress tasks
         *   TIDYING:  All tasks have terminated, workerCount is zero,
         *             the thread transitioning to state TIDYING
         *             will run the terminated() hook method
         *   TERMINATED: terminated() has completed
         *
         * The numerical order among these values matters, to allow
         * ordered comparisons. The runState monotonically increases over
         * time, but need not hit each state. The transitions are:
         *
         * RUNNING -> SHUTDOWN
         *    On invocation of shutdown(), perhaps implicitly in finalize()
         * (RUNNING or SHUTDOWN) -> STOP
         *    On invocation of shutdownNow()
         * SHUTDOWN -> TIDYING
         *    When both queue and pool are empty
         * STOP -> TIDYING
         *    When pool is empty
         * TIDYING -> TERMINATED
         *    When the terminated() hook method has completed
         *
         * Threads waiting in awaitTermination() will return when the
         * state reaches TERMINATED.
         *
         * Detecting the transition from SHUTDOWN to TIDYING is less
         * straightforward than you'd like because the queue may become
         * empty after non-empty and vice versa during SHUTDOWN state, but
         * we can only terminate if, after seeing that it is empty, we see
         * that workerCount is 0 (which sometimes entails a recheck -- see
         * below).
         */
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        private static final int STOP       =  1 << COUNT_BITS;
        private static final int TIDYING    =  2 << COUNT_BITS;
        private static final int TERMINATED =  3 << COUNT_BITS;
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    

    注释已经很清楚告诉我们ctl是workerCount和runSate的结合。我们可以看到,线程池的容量是CAPACITY(线程池中允许的最大线程数是CAPACITY),也就是2的Integer.SIZE-3次方减一。ctl用低29位表示线程池中的线程数,用剩下的高3位表示线程池的运行状态。这一点大家要理解清楚。这下面三个方法是对ctl的操作

        private static int runStateOf(int c)     { return c & ~CAPACITY; }  //获取高三位,也就是线程池的运行状态
        private static int workerCountOf(int c)  { return c & CAPACITY; }  //获取低29位,也就是线程池线程的数量
        private static int ctlOf(int rs, int wc) { return rs | wc; }  //生成ctl
    

    理解了这个之后,我们继续回到execute方法,当一个任务被提交给线程池后,分三种情况:
    1、当前线程池中线程的数量小于corePoolSize,这个时候我们直接创建一个新线程来执行提交的任务。
    2、当线程池中的线程数大于corePoolSize时,如果线程池的状态是RUNNING状态,并且任务加到任务队列成功,我们仍然要再次检查一下线程池的状态,防止任务在添加到任务队列的过程中线程池被停止。如果线程池没有被停止,则调用addWorker方法尝试再创建一个线程去处理任务队列。这里只是去尝试创建,并不一定能创建成功,具体addWorker的实现我们接下来会讨论。
    3、如果任务添加到任务队列失败,这个时候我们再次调用addWorker方法尝试创建一个新线程来处理当前任务,如果失败,则说明线程池被shutdown或者线程池的任务队列已经满了。
    知道了一个任务被提交到线程池的处理流程之后,我们来看一下每个步骤的具体实现。首先是addWorker方法,我们来看一下具体实现:

        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    final ReentrantLock mainLock = this.mainLock;
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int rs = runStateOf(ctl.get());
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    

    首先进入retry循环体,这个循环体的功能是去判断线程池是否可以新创建线程。首先线程池的状态如果大于SHUTDOWN状态,就不允许新创建线程(STOP状态:不再接受新任务也不处理任务队列里的任务,中断正在进行的任务;TIDYING:所有的任务被结束,workerCount被设置为0,线程状态被转变成TIDYING将会调用terminated()钩子方法;TERMINATED:线程调用完terminated()方法)。如果线程池的状态是SHUTDOWN状态,因为我们通过executor方法传进来的任务不是空,所以,这个时候会返回false,不回去了创建新的线程了。也就是说,只有线程池处于RUNNING的时候才有创建新线程的机会。然后判断当前线程数是否超过了线程池的最大容量,如果是则返回false不允许创建。然后通过CAS操作将workerCount加一,如果成功则跳出循环创建线程池,如果失败,再次判断线程池的状态和进入方法时的状态是否一致,如果不一致则重新执行retry循环体,如果一致,则重新判断线程池容量,决定是否能够创建新的线程。
    如果通过以上判断,允许创建新的线程,则新创建一个Worker对象。Worker是个什么东西呢?我们来看一下:

        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
    
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
    
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
    
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
    
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    

    我们先看一下Worker的构造方法:当创建Worker对象的时候,会通过我们之前设置的ThreadFactory的newThread方法来创建一个线程,并交给Worker对象持有。我们来看一下默认的线程池的实现:

    public Thread newThread(Runnable r) {
                Thread t = new Thread(group, r,
                                      namePrefix + threadNumber.getAndIncrement(),
                                      0);
                if (t.isDaemon())
                    t.setDaemon(false);
                if (t.getPriority() != Thread.NORM_PRIORITY)
                    t.setPriority(Thread.NORM_PRIORITY);
                return t;
            }
    

    在调用该方法的时候,会把Worker对象本身传入,我们可以看到Worker实现了Runnable接口。所以当线程启动的时候会调用的是Worker的run()方法。而Worker的run()方法调用了外部类的runWorker方法,我们看一下这个方法:

        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    

    这个方法才是线程池处理任务的整个核心内容,进入方法后,会进入一个循环体:首先获取要执行的任务,如果当前Worker持有的任务不是空,获取的就是该任务,如果是空,就调用getTask()方法来获取任务队列里的任务。这个方法也是实现线程池中空闲线程销毁的关键。我们来看一下它的内部实现:

        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                int wc = workerCountOf(c);
    
                // Are workers subject to culling?
                boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                if ((wc > maximumPoolSize || (timed && timedOut))
                    && (wc > 1 || workQueue.isEmpty())) {
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    continue;
                }
    
                try {
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }
    

    进入方法的时候先定义一个标识位timedOut,这个标识位用来表示从任务队列中获取任务是否超时。如果超时,说明这段时间没有新任务过来,这个线程也就是空闲的,如果当前线程数大于corePoolSize,这个线程就会被销毁。我们来看一下这个过程是怎么实现的:当设置标识位之后,进入一个循环体,来判断当前的线程池的状态,如果当前线程池的状态大于等于STOP,方法直接返回null,返回nulll是什么概念呢?我们回到runWorker方法看一下,当getTask()返回null的时候,while循环结束,执行finall语句块里的processWorkerExit方法。执行完这个方法后线程就会结束,也就是这个线程会被销毁。我们继续回到getTask()方法,当前线程池的状态大于等于STOP时,不管任务队列里是否有任务都不会获取到任务,线程会被销毁。当线程池状态是RUNNING状态的时候会继续接下来的判断,当线程池状态是SHUTDOWN的时候要去判断任务队列是否为空,如果是空就返回null,销毁线程,如果不是空继续接下来的操作。
    当进行完上面的判断后,在设置一个标识位timed,这个标识位用来表示当获取任务超时后是否需要销毁线程。然后进入if ((wc > maximumPoolSize || (timed && timedOut))这个判断,如果当前线程数大于maximumPoolSize,说明线程被创建多了,这个时候要销毁线程,直接返回null。如果获取任务超时(第一次进入这个循环的时候肯定不存在这种情况,因为timedOut标识位被设置成了false),并且当前线程池里面的线程数大于1(因为要保证线程池里必须至少有一个线程)、任务队列是空的时候,返回null销毁线程。
    结束以上判断的时候就要去任务队列取任务,如果timed标识位(表示当获取任务超时后是否需要销毁线程)是ture,就需要在给定时间内获取任务,不然就会返回null,如果返回null,就设置timedOut标识位为ture,表示获取任务超时,当前线程是空闲线程。等到下次循环的时候就会结束方法返回null。如果正常获取任务就讲任务返回。到此getTask()的分析结束,我们做一个小小的总结:如果线程池状态大于STOP,直接返回null销毁线程;如果当前线程池状态是SHUTDOWN并且任务队列是空,返回null销毁线程;如果不是以上两种情况,再判断线程池是否设置了空闲线程销毁,如果是的话,并且从任务队列中获取任务超时,就返回null销毁线程;如果不是就返回获取的线程。
    当获取到任务之后,就去判断当前线程池是否被stop,如果是,中断当前线程,如果不是,就调用interrupted()方法取消中断标志。这一步是用来防止成功获取任务之后线程池被中断。
    当做完 以上检查之后,调用beforeExecute(wt, task)方法,来执行前置操作,这个方法是个模板方法,交由子类实现。之后会执行任务的run方法,真正的执行任务。执行完任务之后会调用 afterExecute(task, thrown)方法来执行后置操作,这个方法也是模板方法。执行完之后,会再次去获取任务执行以上操作。getTask()方法返回null的时候,会调用processWorkerExit(w, completedAbruptly)方法,这个方法做了讲当前的worker对象从线程池中去除等操作(有可能还会重新创建一个线程)。有兴趣的同学可以看一下。
    到此Worker分析结束,我们继续回到addWorker方法,当我们创建一个Worker对象后,讲worker对象添加到workers容器里。然后启动worker对象持有的线程。也就是用来处理任务的线程。
    到此,线程池添加任务、处理任务的分析结束。

    相关文章

      网友评论

          本文标题:Java线程池原理浅析

          本文链接:https://www.haomeiwen.com/subject/kasitxtx.html