美文网首页
C++11 标准库 std::thread 多线程使用教程

C++11 标准库 std::thread 多线程使用教程

作者: ImWiki | 来源:发表于2021-07-10 19:45 被阅读0次

从 C++11 开始,标准库里已经包含了对线程的支持,std::thread是C++11标准库中的多线程的支持库,pthread.h 是标准库没有添加多线程之前的在Linux上用的多线程库。std::thread 是面向对象的多线程库,使用简单,推荐在项目中使用 std::thread 代替 pthread.h。

修改 CMakeLists.txt

项目中用到了C++ 17的时间代码风格,需要修改为对应的版本。

# CMakeLists.txt
set(CMAKE_CXX_STANDARD 17)

创建线程

#include <iostream>
#include <thread>

using namespace std;

void SayHello() {
    cout << "Hello World" << endl;
}

int main() {
    std::thread t1(SayHello);
    // 等待子线程结束才退出当前线程
    pthread_exit(nullptr);
    return 0;
}

如果不加 pthread_exit(nullptr),会报libc++abi: terminating程序终止的错误。可以通过 detach() 函数,将子线程和主线分离,子线程可以独立继续运行,即使主线程结束,子线程也不会结束。

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;

void SayHello() {
    cout << "Hello World" << endl;
}

int main() {
    std::thread t1(SayHello);
    t1.detach();
    this_thread::sleep_for(10ms);
    // 低于C++17使用这行代码  this_thread::sleep_for(chrono::milliseconds(10));
    return 0;
}

传递参数

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;

void SayHello(int id, string name) {
    this_thread::sleep_for(10ms);
    cout << "ID:" << id << ", Hello " << name << endl;
}

int main() {
    std::thread t1(SayHello, 1, "Wiki");
    t1.join();
    return 0;
}

线程睡眠

using namespace std::literals::chrono_literals;
// 让当前线程睡眠 10 毫秒
this_thread::sleep_for(10ms);
// 低于C++17使用这行代码  this_thread::sleep_for(chrono::milliseconds(10));
// 让当前线程睡眠 5 秒
this_thread::sleep_for(5s);

join() 等待线程运行结束

join() 函数可以在当前线程等待线程运行结束。

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;

void SayHello() {
    this_thread::sleep_for(10ms);
    cout << "Hello World" << endl;
}

int main() {
    std::thread t1(SayHello);
    t1.join();
    return 0;
}

condition_variable / wait / notify_one

使用 condition_variable 实现生产者和消费者的实验,通过 wait 进入线程等待,知道有其它的线程把当前线程唤醒。

#include <iostream>
#include <thread>
#include <list>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;
condition_variable g_con;

list<int> products;

void test() {
    int product_id = 0;
    while (true) {
        products.push_back(++product_id);
        cout << "products 生产: " << product_id << endl;
        std::unique_lock<std::mutex> lock(g_mutex);
        // 通知消费者消费
        g_con.notify_one();
        lock.unlock();
        if (product_id > 50) {
            break;
        }
        this_thread::sleep_for(2ms);
    }
}

int main() {
    std::thread t1(test);
    while (true) {
        std::unique_lock<std::mutex> lock(g_mutex);
        if (products.empty()) {
            cout << "没有产品,等待" << endl;
            // 进入等待,知道有新产品
            g_con.wait(lock);
        } else {
            int product_id = products.front();
            products.pop_front();
            cout << "消费产品 " << product_id << endl;
            this_thread::sleep_for(2ms);
            if (product_id > 50) break;
        }
    }
    t1.join();
    return 0;
}

输出结果:

没有产品,等待
products 生产: 1
消费产品 1
products 生产: 2
消费产品 2
没有产品,等待
没有产品,等待
...

thread_local

C++11中提供了thread_local,thread_local定义的变量在每个线程都保存一份副本,而且互不干扰,在线程退出的时候自动销毁。

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
thread_local int t_l_counter = 0;

void test() {
    cout << "flag1 t_l_counter: " << t_l_counter << endl;
    t_l_counter = 2;
}

int main() {
    t_l_counter = 1;
    std::thread t1(test);
    t1.join();
    cout << "flag2 t_l_counter: " << t_l_counter << endl;
    return 0;
}

结果:

flag1 t_l_counter: 0
flag2 t_l_counter: 1

同步锁

#include <iostream>
#include <thread>
using namespace std;
void test() {
    cout << "task start thread ID: " << this_thread::get_id() << endl;
    this_thread::sleep_for(10ms);
    cout << "task end thread ID: " << this_thread::get_id() << endl;
}
int main() {
    std::thread t1(test);
    std::thread t2(test);
    std::thread t3(test);
    t1.join();
    t2.join();
    t3.join();
    return 0;
}

运行结果:

task start thread ID: task start thread ID: task start thread ID: 0x70000fab00000x70000fb33000

0x70000fbb6000
task end thread ID: 0x70000fab0000
task end thread ID: task end thread ID: 0x70000fb33000
0x70000fbb6000

以上代码数据的结果是无序的,如果我们需要同一时间只有一个线程在test函数中执行代码,那么就要加锁,lock() 用于加锁,而unlock() 解锁。

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;

void test() {
    g_mutex.lock();
    cout << "task start thread ID: " << this_thread::get_id() << endl;
    this_thread::sleep_for(10ms);
    cout << "task end thread ID: " << this_thread::get_id() << endl;
    g_mutex.unlock();
}
int main() {
    std::thread t1(test);
    std::thread t2(test);
    std::thread t3(test);
    t1.join();
    t2.join();
    t3.join();
    return 0;
}

运行结果:

task start thread ID: 0x70000e4f2000
task end thread ID: 0x70000e4f2000
task start thread ID: 0x70000e46f000
task end thread ID: 0x70000e46f000
task start thread ID: 0x70000e3ec000
task end thread ID: 0x70000e3ec000

除了std::mutex(非递归的互斥量),还有std::timed_mutex(带超时的非递归互斥量),std::recursive_mutex(递归互斥量)、std::recursive_timed_mutex(带超时的递归互斥量)。

同步锁封装类

可以创建一个 ScopeMutex 类,通过构造函数和析构函数实现加锁和解锁,ScopeMutex 的作用域只在 {} 之内加锁。

#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;

class ScopeMutex {
public:
    explicit ScopeMutex(std::mutex &mutex) {
        this->mutex = &mutex;
        this->mutex->lock();
    }

    ~ScopeMutex() {
        this->mutex->unlock();
    }

    std::mutex *mutex;
};

void test() {
    cout << "task prepare thread ID: " << this_thread::get_id() << endl;
    {
        ScopeMutex scopeMutex(g_mutex);
        cout << "task start thread ID: " << this_thread::get_id() << endl;
        this_thread::sleep_for(10ms);
        cout << "task end thread ID: " << this_thread::get_id() << endl;
    }

}

int main() {
    std::thread t1(test);
    std::thread t2(test);
    std::thread t3(test);
    t1.join();
    t2.join();
    t3.join();
    return 0;
}

运行结果:

task prepare thread ID: task prepare thread ID: 0x70000d9bd0000x70000d8b7000
task start thread ID: 0x70000d9bd000

task prepare thread ID: 0x70000d93a000
task end thread ID: 0x70000d9bd000
task start thread ID: 0x70000d8b7000
task end thread ID: 0x70000d8b7000
task start thread ID: 0x70000d93a000
task end thread ID: 0x70000d93a000

相关文章

网友评论

      本文标题:C++11 标准库 std::thread 多线程使用教程

      本文链接:https://www.haomeiwen.com/subject/kbacpltx.html