从 C++11 开始,标准库里已经包含了对线程的支持,std::thread是C++11标准库中的多线程的支持库,pthread.h 是标准库没有添加多线程之前的在Linux上用的多线程库。std::thread 是面向对象的多线程库,使用简单,推荐在项目中使用 std::thread 代替 pthread.h。
修改 CMakeLists.txt
项目中用到了C++ 17的时间代码风格,需要修改为对应的版本。
# CMakeLists.txt
set(CMAKE_CXX_STANDARD 17)
创建线程
#include <iostream>
#include <thread>
using namespace std;
void SayHello() {
cout << "Hello World" << endl;
}
int main() {
std::thread t1(SayHello);
// 等待子线程结束才退出当前线程
pthread_exit(nullptr);
return 0;
}
如果不加 pthread_exit(nullptr),会报libc++abi: terminating
程序终止的错误。可以通过 detach() 函数,将子线程和主线分离,子线程可以独立继续运行,即使主线程结束,子线程也不会结束。
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
void SayHello() {
cout << "Hello World" << endl;
}
int main() {
std::thread t1(SayHello);
t1.detach();
this_thread::sleep_for(10ms);
// 低于C++17使用这行代码 this_thread::sleep_for(chrono::milliseconds(10));
return 0;
}
传递参数
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
void SayHello(int id, string name) {
this_thread::sleep_for(10ms);
cout << "ID:" << id << ", Hello " << name << endl;
}
int main() {
std::thread t1(SayHello, 1, "Wiki");
t1.join();
return 0;
}
线程睡眠
using namespace std::literals::chrono_literals;
// 让当前线程睡眠 10 毫秒
this_thread::sleep_for(10ms);
// 低于C++17使用这行代码 this_thread::sleep_for(chrono::milliseconds(10));
// 让当前线程睡眠 5 秒
this_thread::sleep_for(5s);
join() 等待线程运行结束
join() 函数可以在当前线程等待线程运行结束。
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
void SayHello() {
this_thread::sleep_for(10ms);
cout << "Hello World" << endl;
}
int main() {
std::thread t1(SayHello);
t1.join();
return 0;
}
condition_variable / wait / notify_one
使用 condition_variable 实现生产者和消费者的实验,通过 wait 进入线程等待,知道有其它的线程把当前线程唤醒。
#include <iostream>
#include <thread>
#include <list>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;
condition_variable g_con;
list<int> products;
void test() {
int product_id = 0;
while (true) {
products.push_back(++product_id);
cout << "products 生产: " << product_id << endl;
std::unique_lock<std::mutex> lock(g_mutex);
// 通知消费者消费
g_con.notify_one();
lock.unlock();
if (product_id > 50) {
break;
}
this_thread::sleep_for(2ms);
}
}
int main() {
std::thread t1(test);
while (true) {
std::unique_lock<std::mutex> lock(g_mutex);
if (products.empty()) {
cout << "没有产品,等待" << endl;
// 进入等待,知道有新产品
g_con.wait(lock);
} else {
int product_id = products.front();
products.pop_front();
cout << "消费产品 " << product_id << endl;
this_thread::sleep_for(2ms);
if (product_id > 50) break;
}
}
t1.join();
return 0;
}
输出结果:
没有产品,等待
products 生产: 1
消费产品 1
products 生产: 2
消费产品 2
没有产品,等待
没有产品,等待
...
thread_local
C++11中提供了thread_local,thread_local定义的变量在每个线程都保存一份副本,而且互不干扰,在线程退出的时候自动销毁。
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
thread_local int t_l_counter = 0;
void test() {
cout << "flag1 t_l_counter: " << t_l_counter << endl;
t_l_counter = 2;
}
int main() {
t_l_counter = 1;
std::thread t1(test);
t1.join();
cout << "flag2 t_l_counter: " << t_l_counter << endl;
return 0;
}
结果:
flag1 t_l_counter: 0
flag2 t_l_counter: 1
同步锁
#include <iostream>
#include <thread>
using namespace std;
void test() {
cout << "task start thread ID: " << this_thread::get_id() << endl;
this_thread::sleep_for(10ms);
cout << "task end thread ID: " << this_thread::get_id() << endl;
}
int main() {
std::thread t1(test);
std::thread t2(test);
std::thread t3(test);
t1.join();
t2.join();
t3.join();
return 0;
}
运行结果:
task start thread ID: task start thread ID: task start thread ID: 0x70000fab00000x70000fb33000
0x70000fbb6000
task end thread ID: 0x70000fab0000
task end thread ID: task end thread ID: 0x70000fb33000
0x70000fbb6000
以上代码数据的结果是无序的,如果我们需要同一时间只有一个线程在test函数中执行代码,那么就要加锁,lock() 用于加锁,而unlock() 解锁。
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;
void test() {
g_mutex.lock();
cout << "task start thread ID: " << this_thread::get_id() << endl;
this_thread::sleep_for(10ms);
cout << "task end thread ID: " << this_thread::get_id() << endl;
g_mutex.unlock();
}
int main() {
std::thread t1(test);
std::thread t2(test);
std::thread t3(test);
t1.join();
t2.join();
t3.join();
return 0;
}
运行结果:
task start thread ID: 0x70000e4f2000
task end thread ID: 0x70000e4f2000
task start thread ID: 0x70000e46f000
task end thread ID: 0x70000e46f000
task start thread ID: 0x70000e3ec000
task end thread ID: 0x70000e3ec000
除了std::mutex(非递归的互斥量),还有std::timed_mutex(带超时的非递归互斥量),std::recursive_mutex(递归互斥量)、std::recursive_timed_mutex(带超时的递归互斥量)。
同步锁封装类
可以创建一个 ScopeMutex 类,通过构造函数和析构函数实现加锁和解锁,ScopeMutex 的作用域只在 {} 之内加锁。
#include <iostream>
#include <thread>
using namespace std::literals::chrono_literals;
using namespace std;
std::mutex g_mutex;
class ScopeMutex {
public:
explicit ScopeMutex(std::mutex &mutex) {
this->mutex = &mutex;
this->mutex->lock();
}
~ScopeMutex() {
this->mutex->unlock();
}
std::mutex *mutex;
};
void test() {
cout << "task prepare thread ID: " << this_thread::get_id() << endl;
{
ScopeMutex scopeMutex(g_mutex);
cout << "task start thread ID: " << this_thread::get_id() << endl;
this_thread::sleep_for(10ms);
cout << "task end thread ID: " << this_thread::get_id() << endl;
}
}
int main() {
std::thread t1(test);
std::thread t2(test);
std::thread t3(test);
t1.join();
t2.join();
t3.join();
return 0;
}
运行结果:
task prepare thread ID: task prepare thread ID: 0x70000d9bd0000x70000d8b7000
task start thread ID: 0x70000d9bd000
task prepare thread ID: 0x70000d93a000
task end thread ID: 0x70000d9bd000
task start thread ID: 0x70000d8b7000
task end thread ID: 0x70000d8b7000
task start thread ID: 0x70000d93a000
task end thread ID: 0x70000d93a000
网友评论