美文网首页
swift经典算法-快速排序

swift经典算法-快速排序

作者: 疯狂1024 | 来源:发表于2020-08-12 08:18 被阅读0次

    快速排序

    快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

    快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

    快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

    快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

    快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

    1. 算法步骤

    (1)、从数列中挑出一个元素,称为 “基准”(pivot);

    (2)、重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

    (3)、递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

            递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

    2. 动图演示

    3. 代码实现

            快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。其实快速排序是基于一种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。先上代码,如下

    4. 知识小序

            快速排序由 C. A. R. Hoare(东尼霍尔,Charles Antony Richard Hoare)在1960年提出,之后又有许多人做了进一步的优化。如果你对快速排序感兴趣可以去看看东尼霍尔1962年在Computer Journal发表的论文“Quicksort”以及《算法导论》的第七章。快速排序算法仅仅是东尼霍尔在计算机领域才能的***次显露,后来他受到了老板的赏识和重用,公司希望他为新机器设计一个新的高级语言。你要知道当时还没有PASCAL或者C语言这些高级的东东。后来东尼霍尔参加了由Edsger Wybe Dijkstra(1972年图灵奖得主,这个大神我们后面还会遇到的到时候再细聊)举办的“ALGOL 60”培训班,他觉得自己与其没有把握去设计一个新的语言,还不如对现有的“ALGOL 60”进行改进,使之能在公司的新机器上使用。于是他便设计了“ALGOL 60”的一个子集版本。这个版本在执行效率和可靠性上都在当时“ALGOL 60”的各种版本中***,因此东尼霍尔受到了国际学术界的重视。后来他在“ALGOL X”的设计中还发明了大家熟知的“case”语句,后来也被各种高级语言广泛采用,比如PASCAL、C、Java语言等等。当然,东尼霍尔在计算机领域的贡献还有很多很多,他在1980年获得了图灵奖。

    更多算法知识,关注微信公众号:

    相关文章

      网友评论

          本文标题:swift经典算法-快速排序

          本文链接:https://www.haomeiwen.com/subject/kbzhrktx.html