美文网首页
常见的几种加密方法

常见的几种加密方法

作者: Time_x | 来源:发表于2019-06-10 17:18 被阅读0次

    常见的几种加密方法和实

    常见的几种加密方法 :

    git demo下载

    csdn demo下载

    MD5

    SHA1

    RSA

    AES

    DES

    1、MD5加密 是HASH算法一种、 是生成32位的数字字母混合码。 MD5主要特点是 不可逆

    MD5算法还具有以下性质:

    1、压缩性:任意长度的数据,算出的MD5值长度都是固定的。

    2、容易计算:从原数据计算出MD5值很容易。

    3、抗修改性:对原数据进行任何改动,哪怕只修改1个字节,所得到的MD5值都有很大区别。

    4、弱抗碰撞:已知原数据和其MD5值,想找到一个具有相同MD5值的数据(即伪造数据)是非常困难的。

    5、强抗碰撞:想找到两个不同的数据,使它们具有相同的MD5值,是非常困难的。

    具体代码

    //输出小写

    - (NSString *)lowerMD5:(NSString *)inPutText

    {

        //传入参数,转化成char

        const char *cStr = [inPutText UTF8String];

        //开辟一个16字节的空间

        unsigned char result[CC_MD5_DIGEST_LENGTH];

        /*

        extern unsigned char * CC_MD5(const void *data, CC_LONG len, unsigned char *md)官方封装好的加密方法

          把str字符串转换成了32位的16进制数列(这个过程不可逆转) 存储到了md这个空间中

        */

        CC_MD5(cStr, (CC_LONG)strlen(cStr), result);

        return [[NSString stringWithFormat:@"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",

                result[0], result[1], result[2], result[3],

                result[4], result[5], result[6], result[7],

                result[8], result[9], result[10], result[11],

                result[12], result[13], result[14], result[15]

                ] lowercaseString];  //大小写注意

    }

    //输出大写

    - (NSString *)upperMD5:(NSString *)inPutText

    {

        //传入参数,转化成char

        const char *cStr = [inPutText UTF8String];

        //开辟一个16字节的空间

        unsigned char result[CC_MD5_DIGEST_LENGTH];

        /*

        extern unsigned char * CC_MD5(const void *data, CC_LONG len, unsigned char *md)官方封装好的加密方法

        把str字符串转换成了32位的16进制数列(这个过程不可逆转) 存储到了md这个空间中

        */

        CC_MD5(cStr, (CC_LONG)strlen(cStr), result);

        return [[NSString stringWithFormat:@"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",

                result[0], result[1], result[2], result[3],

                result[4], result[5], result[6], result[7],

                result[8], result[9], result[10], result[11],

                result[12], result[13], result[14], result[15]

                ] uppercaseString];  //大小写注意

    }

    调用 : 代码实现

    NSLog(@"小写:%@",[self lowerMD5:@"123456"]);

    NSLog(@"大写:%@",[self upperMD5:@"123456"]);

    为了让MD5码更加安全 ,我们现在都采用加盐,盐要越长越乱,得到的MD5码就很难查到。

    static NSString * salt =@"asdfghjklpoiuytrewqzxcvbnm";

    NSLog(@"加盐小写:%@",[self lowerMD5:[@"123456" stringByAppendingString:salt]]);

    NSLog(@"加盐大写:%@",[self upperMD5:[@"123456" stringByAppendingString:salt]]);

    输出结果

    2018-11-27 15:27:12.012590+0800 Encryption[12828:3995427]

    小写:e10adc3949ba59abbe56e057f20f883e 2018-11-27 15:27:12.012774+0800

    Encryption[12828:3995427] 大写:E10ADC3949BA59ABBE56E057F20F883E

    2018-11-27 15:27:12.012901+0800 Encryption[12828:3995427]

    加盐小写:71d1bda9346fab4eea309f4ed74b8f80 2018-11-27 15:27:12.013108+0800

    Encryption[12828:3995427] 加盐大写:71D1BDA9346FAB4EEA309F4ED74B8F80

    2、SHA1 算法是哈希算法的一种

    代码实现 :

    //sha1

    - (NSString *)sha1:(NSString *)input

    {

        const char *cstr = [input cStringUsingEncoding:NSUTF8StringEncoding];

        NSData *data = [NSData dataWithBytes:cstr length:input.length];

        //使用对应的  CC_SHA1_DIGEST_LENGTH,CC_SHA224_DIGEST_LENGTH,CC_SHA256_DIGEST_LENGTH,CC_SHA384_DIGEST_LENGTH,CC_SHA512_DIGEST_LENGTH的长度分别是20,28,32,48,64。;看你们需求选择对应的长度

        uint8_t digest[CC_SHA1_DIGEST_LENGTH];

        CC_SHA1(data.bytes, (unsigned int)data.length, digest);

        NSMutableString *output = [NSMutableString stringWithCapacity:CC_SHA1_DIGEST_LENGTH * 2];

        for(int i=0; i<CC_SHA1_DIGEST_LENGTH; i++) {

            [output appendFormat:@"%02x", digest[i]];

        }

        NSLog(@"sha----->%@",output);

        return output;

    }

    调用 代码实现 [self sha1:@"123456"];

    运行结果 :

    2018-11-27 15:27:12.013237+0800 Encryption[12828:3995427]

    sha----7c4a8d09ca3762af61e59520943dc26494f8941b

    3、RSA 非对称加密算法 (公钥私钥生成步骤点击)

    非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)

    公开密钥与私有密钥是一对,用公开密钥对数据进行加密,只有用对应的私有密钥才能解密;

    特点:

    非对称密码体制的特点:算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快

    对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了

    具体代码:

    .h

    // return base64 encoded string

    + (NSString *)encryptString:(NSString *)str publicKey:(NSString *)pubKey;

    // return raw data

    + (NSData *)encryptData:(NSData *)data publicKey:(NSString *)pubKey;

    // return base64 encoded string

    + (NSString *)encryptString:(NSString *)str privateKey:(NSString *)privKey;

    // return raw data

    + (NSData *)encryptData:(NSData *)data privateKey:(NSString *)privKey;

    // decrypt base64 encoded string, convert result to string(not base64 encoded)

    + (NSString *)decryptString:(NSString *)str publicKey:(NSString *)pubKey;

    + (NSData *)decryptData:(NSData *)data publicKey:(NSString *)pubKey;

    + (NSString *)decryptString:(NSString *)str privateKey:(NSString *)privKey;

    + (NSData *)decryptData:(NSData *)data privateKey:(NSString *)privKey;

    实现

    static NSString *base64_encode_data(NSData *data){

        data = [data base64EncodedDataWithOptions:0];

        NSString *ret = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

        return ret;

    }

    static NSData *base64_decode(NSString *str){

        NSData *data = [[NSData alloc] initWithBase64EncodedString:str options:NSDataBase64DecodingIgnoreUnknownCharacters];

        return data;

    }

    + (NSData *)stripPublicKeyHeader:(NSData *)d_key{

        // Skip ASN.1 public key header

        if (d_key == nil) return(nil);

        unsigned long len = [d_key length];

        if (!len) return(nil);

        unsigned char *c_key = (unsigned char *)[d_key bytes];

        unsigned int  idx    = 0;

        if (c_key[idx++] != 0x30) return(nil);

        if (c_key[idx] > 0x80) idx += c_key[idx] - 0x80 + 1;

        else idx++;

        // PKCS #1 rsaEncryption szOID_RSA_RSA

        static unsigned char seqiod[] =

        { 0x30,  0x0d, 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,

            0x01, 0x05, 0x00 };

        if (memcmp(&c_key[idx], seqiod, 15)) return(nil);

        idx += 15;

        if (c_key[idx++] != 0x03) return(nil);

        if (c_key[idx] > 0x80) idx += c_key[idx] - 0x80 + 1;

        else idx++;

        if (c_key[idx++] != '\0') return(nil);

        // Now make a new NSData from this buffer

        return([NSData dataWithBytes:&c_key[idx] length:len - idx]);

    }

    + (NSData *)stripPrivateKeyHeader:(NSData *)d_key{

        // Skip ASN.1 private key header

        if (d_key == nil) return(nil);

        unsigned long len = [d_key length];

        if (!len) return(nil);

        unsigned char *c_key = (unsigned char *)[d_key bytes];

        unsigned int  idx    = 22; //magic byte at offset 22

        if (0x04 != c_key[idx++]) return nil;

        unsigned int c_len = c_key[idx++];

        int det = c_len & 0x80;

        if (!det) {

            c_len = c_len & 0x7f;

        } else {

            int byteCount = c_len & 0x7f;

            if (byteCount + idx > len) {

                //rsa length field longer than buffer

                return nil;

            }

            unsigned int accum = 0;

            unsigned char *ptr = &c_key[idx];

            idx += byteCount;

            while (byteCount) {

                accum = (accum << 8) + *ptr;

                ptr++;

                byteCount--;

            }

            c_len = accum;

        }

        // Now make a new NSData from this buffer

        return [d_key subdataWithRange:NSMakeRange(idx, c_len)];

    }

    + (SecKeyRef)addPublicKey:(NSString *)key{

        NSRange spos = [key rangeOfString:@"-----BEGIN PUBLIC KEY-----"];

        NSRange epos = [key rangeOfString:@"-----END PUBLIC KEY-----"];

        if(spos.location != NSNotFound && epos.location != NSNotFound){

            NSUInteger s = spos.location + spos.length;

            NSUInteger e = epos.location;

            NSRange range = NSMakeRange(s, e-s);

            key = [key substringWithRange:range];

        }

        key = [key stringByReplacingOccurrencesOfString:@"\r" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@"\n" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@"\t" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@" "  withString:@""];

        // This will be base64 encoded, decode it.

        NSData *data = base64_decode(key);

        data = [LHRSA stripPublicKeyHeader:data];

        if(!data){

            return nil;

        }

        //a tag to read/write keychain storage

        NSString *tag = @"RSAUtil_PubKey";

        NSData *d_tag = [NSData dataWithBytes:[tag UTF8String] length:[tag length]];

        // Delete any old lingering key with the same tag

        NSMutableDictionary *publicKey = [[NSMutableDictionary alloc] init];

        [publicKey setObject:(__bridge id) kSecClassKey forKey:(__bridge id)kSecClass];

        [publicKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];

        [publicKey setObject:d_tag forKey:(__bridge id)kSecAttrApplicationTag];

        SecItemDelete((__bridge CFDictionaryRef)publicKey);

        // Add persistent version of the key to system keychain

        [publicKey setObject:data forKey:(__bridge id)kSecValueData];

        [publicKey setObject:(__bridge id) kSecAttrKeyClassPublic forKey:(__bridge id)

        kSecAttrKeyClass];

        [publicKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)

        kSecReturnPersistentRef];

        CFTypeRef persistKey = nil;

        OSStatus status = SecItemAdd((__bridge CFDictionaryRef)publicKey, &persistKey);

        if (persistKey != nil){

            CFRelease(persistKey);

        }

        if ((status != noErr) && (status != errSecDuplicateItem)) {

            return nil;

        }

        [publicKey removeObjectForKey:(__bridge id)kSecValueData];

        [publicKey removeObjectForKey:(__bridge id)kSecReturnPersistentRef];

        [publicKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)kSecReturnRef];

        [publicKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];

        // Now fetch the SecKeyRef version of the key

        SecKeyRef keyRef = nil;

        status = SecItemCopyMatching((__bridge CFDictionaryRef)publicKey, (CFTypeRef *)&keyRef);

        if(status != noErr){

            return nil;

        }

        return keyRef;

    }

    + (SecKeyRef)addPrivateKey:(NSString *)key{

        NSRange spos;

        NSRange epos;

        spos = [key rangeOfString:@"-----BEGIN RSA PRIVATE KEY-----"];

        if(spos.length > 0){

            epos = [key rangeOfString:@"-----END RSA PRIVATE KEY-----"];

        }else{

            spos = [key rangeOfString:@"-----BEGIN PRIVATE KEY-----"];

            epos = [key rangeOfString:@"-----END PRIVATE KEY-----"];

        }

        if(spos.location != NSNotFound && epos.location != NSNotFound){

            NSUInteger s = spos.location + spos.length;

            NSUInteger e = epos.location;

            NSRange range = NSMakeRange(s, e-s);

            key = [key substringWithRange:range];

        }

        key = [key stringByReplacingOccurrencesOfString:@"\r" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@"\n" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@"\t" withString:@""];

        key = [key stringByReplacingOccurrencesOfString:@" "  withString:@""];

        // This will be base64 encoded, decode it.

        NSData *data = base64_decode(key);

        data = [LHRSA stripPrivateKeyHeader:data];

        if(!data){

            return nil;

        }

        //a tag to read/write keychain storage

        NSString *tag = @"RSAUtil_PrivKey";

        NSData *d_tag = [NSData dataWithBytes:[tag UTF8String] length:[tag length]];

        // Delete any old lingering key with the same tag

        NSMutableDictionary *privateKey = [[NSMutableDictionary alloc] init];

        [privateKey setObject:(__bridge id) kSecClassKey forKey:(__bridge id)kSecClass];

        [privateKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];

        [privateKey setObject:d_tag forKey:(__bridge id)kSecAttrApplicationTag];

        SecItemDelete((__bridge CFDictionaryRef)privateKey);

        // Add persistent version of the key to system keychain

        [privateKey setObject:data forKey:(__bridge id)kSecValueData];

        [privateKey setObject:(__bridge id) kSecAttrKeyClassPrivate forKey:(__bridge id)

        kSecAttrKeyClass];

        [privateKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)

        kSecReturnPersistentRef];

        CFTypeRef persistKey = nil;

        OSStatus status = SecItemAdd((__bridge CFDictionaryRef)privateKey, &persistKey);

        if (persistKey != nil){

            CFRelease(persistKey);

        }

        if ((status != noErr) && (status != errSecDuplicateItem)) {

            return nil;

        }

        [privateKey removeObjectForKey:(__bridge id)kSecValueData];

        [privateKey removeObjectForKey:(__bridge id)kSecReturnPersistentRef];

        [privateKey setObject:[NSNumber numberWithBool:YES] forKey:(__bridge id)kSecReturnRef];

        [privateKey setObject:(__bridge id) kSecAttrKeyTypeRSA forKey:(__bridge id)kSecAttrKeyType];

        // Now fetch the SecKeyRef version of the key

        SecKeyRef keyRef = nil;

        status = SecItemCopyMatching((__bridge CFDictionaryRef)privateKey, (CFTypeRef *)&keyRef);

        if(status != noErr){

            return nil;

        }

        return keyRef;

    }

    /* START: Encryption & Decryption with RSA private key */

    + (NSData *)encryptData:(NSData *)data withKeyRef:(SecKeyRef) keyRef isSign:(BOOL)isSign {

        const uint8_t *srcbuf = (const uint8_t *)[data bytes];

        size_t srclen = (size_t)data.length;

        size_t block_size = SecKeyGetBlockSize(keyRef) * sizeof(uint8_t);

        void *outbuf = malloc(block_size);

        size_t src_block_size = block_size - 11;

        NSMutableData *ret = [[NSMutableData alloc] init];

        for(int idx=0; idx<srclen; idx+=src_block_size){

            //NSLog(@"%d/%d block_size: %d", idx, (int)srclen, (int)block_size);

            size_t data_len = srclen - idx;

            if(data_len > src_block_size){

                data_len = src_block_size;

            }

            size_t outlen = block_size;

            OSStatus status = noErr;

            if (isSign) {

                status = SecKeyRawSign(keyRef,

                                      kSecPaddingPKCS1,

                                      srcbuf + idx,

                                      data_len,

                                      outbuf,

                                      &outlen

                                      );

            } else {

                status = SecKeyEncrypt(keyRef,

                                      kSecPaddingPKCS1,

                                      srcbuf + idx,

                                      data_len,

                                      outbuf,

                                      &outlen

                                      );

            }

            if (status != 0) {

                NSLog(@"SecKeyEncrypt fail. Error Code: %d", status);

                ret = nil;

                break;

            }else{

                [ret appendBytes:outbuf length:outlen];

            }

        }

        free(outbuf);

        CFRelease(keyRef);

        return ret;

    }

    + (NSString *)encryptString:(NSString *)str privateKey:(NSString *)privKey{

        NSData *data = [LHRSA encryptData:[str dataUsingEncoding:NSUTF8StringEncoding] privateKey:privKey];

        NSString *ret = base64_encode_data(data);

        return ret;

    }

    + (NSData *)encryptData:(NSData *)data privateKey:(NSString *)privKey{

        if(!data || !privKey){

            return nil;

        }

        SecKeyRef keyRef = [LHRSA addPrivateKey:privKey];

        if(!keyRef){

            return nil;

        }

        return [LHRSA encryptData:data withKeyRef:keyRef isSign:YES];

    }

    + (NSData *)decryptData:(NSData *)data withKeyRef:(SecKeyRef) keyRef{

        const uint8_t *srcbuf = (const uint8_t *)[data bytes];

        size_t srclen = (size_t)data.length;

        size_t block_size = SecKeyGetBlockSize(keyRef) * sizeof(uint8_t);

        UInt8 *outbuf = malloc(block_size);

        size_t src_block_size = block_size;

        NSMutableData *ret = [[NSMutableData alloc] init];

        for(int idx=0; idx<srclen; idx+=src_block_size){

            //NSLog(@"%d/%d block_size: %d", idx, (int)srclen, (int)block_size);

            size_t data_len = srclen - idx;

            if(data_len > src_block_size){

                data_len = src_block_size;

            }

            size_t outlen = block_size;

            OSStatus status = noErr;

            status = SecKeyDecrypt(keyRef,

                                  kSecPaddingNone,

                                  srcbuf + idx,

                                  data_len,

                                  outbuf,

                                  &outlen

                                  );

            if (status != 0) {

                NSLog(@"SecKeyEncrypt fail. Error Code: %d", status);

                ret = nil;

                break;

            }else{

                //the actual decrypted data is in the middle, locate it!

                int idxFirstZero = -1;

                int idxNextZero = (int)outlen;

                for ( int i = 0; i < outlen; i++ ) {

                    if ( outbuf[i] == 0 ) {

                        if ( idxFirstZero < 0 ) {

                            idxFirstZero = i;

                        } else {

                            idxNextZero = i;

                            break;

                        }

                    }

                }

                [ret appendBytes:&outbuf[idxFirstZero+1] length:idxNextZero-idxFirstZero-1];

            }

        }

        free(outbuf);

        CFRelease(keyRef);

        return ret;

    }

    + (NSString *)decryptString:(NSString *)str privateKey:(NSString *)privKey{

        NSData *data = [[NSData alloc] initWithBase64EncodedString:str options:NSDataBase64DecodingIgnoreUnknownCharacters];

        data = [LHRSA decryptData:data privateKey:privKey];

        NSString *ret = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

        return ret;

    }

    + (NSData *)decryptData:(NSData *)data privateKey:(NSString *)privKey{

        if(!data || !privKey){

            return nil;

        }

        SecKeyRef keyRef = [LHRSA addPrivateKey:privKey];

        if(!keyRef){

            return nil;

        }

        return [LHRSA decryptData:data withKeyRef:keyRef];

    }

    /* END: Encryption & Decryption with RSA private key */

    /* START: Encryption & Decryption with RSA public key */

    + (NSString *)encryptString:(NSString *)str publicKey:(NSString *)pubKey{

        NSData *data = [LHRSA encryptData:[str dataUsingEncoding:NSUTF8StringEncoding] publicKey:pubKey];

        NSString *ret = base64_encode_data(data);

        return ret;

    }

    + (NSData *)encryptData:(NSData *)data publicKey:(NSString *)pubKey{

        if(!data || !pubKey){

            return nil;

        }

        SecKeyRef keyRef = [LHRSA addPublicKey:pubKey];

        if(!keyRef){

            return nil;

        }

        return [LHRSA encryptData:data withKeyRef:keyRef isSign:NO];

    }

    + (NSString *)decryptString:(NSString *)str publicKey:(NSString *)pubKey{

        NSData *data = [[NSData alloc] initWithBase64EncodedString:str options:NSDataBase64DecodingIgnoreUnknownCharacters];

        data = [LHRSA decryptData:data publicKey:pubKey];

        NSString *ret = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

        return ret;

    }

    + (NSData *)decryptData:(NSData *)data publicKey:(NSString *)pubKey{

        if(!data || !pubKey){

            return nil;

        }

        SecKeyRef keyRef = [LHRSA addPublicKey:pubKey];

        if(!keyRef){

            return nil;

        }

        return [LHRSA decryptData:data withKeyRef:keyRef];

    }

    调用

    //公钥

        NSString *publicKey = @"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCVtz/hQUNiLE1prYofqLlmYtK0OupHN7wk+ZaeYVoQqk0v+1w/MIUm20BGKNjVAo9ZBH7IDWSQ25Mhh9+niizPULk+tWqvm5wWOwEy5R/dbjNmGDFCrFXC0gYAXI4uLhcVNGNWbu3mm3BVh9LmVU+d3qr1ZxILkJ+36x/VCe/vIQIDAQAB";

        //私钥

        NSString *privateKey = @"MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBAJW3P+FBQ2IsTWmtih+ouWZi0rQ66kc3vCT5lp5hWhCqTS/7XD8whSbbQEYo2NUCj1kEfsgNZJDbkyGH36eKLM9QuT61aq+bnBY7ATLlH91uM2YYMUKsVcLSBgBcji4uFxU0Y1Zu7eabcFWH0uZVT53eqvVnEguQn7frH9UJ7+8hAgMBAAECgYBrkxpRTkWOmuqczlb63I8q5EMlwVdpCMEliDkTYDwI0XVYzrG/rate+hc60krK82Xwvmwibo0eEMetRiYMChqbWrwnNwTRP0dJGRxiaVAaS7rBW79swNhzzz985cszkJ5fo7fIym6hbZjRFBz1dwtVNsCg4Ts5OCCrEoRn163m6QJBAMPKfihawOV9IKIBJ+J/jTUojuwuw/3MPLrVth27I0F0ET7MdtFG4qpmzmZtr0ZuV7ewGqRiT1Q7MfrvoHTYJ0sCQQDDwYWG8NAlv8FO56WlEuouuq4q+Pp6XOuGR6IUa4En+E+nvkYUc6Rmqy5Q/wuyiHEfAAgwE72nJHRDdHwPSGPDAkEAvGQXSBUrDqZ7w+aAzjwVT1UbUL8e7xKaTNxeQ/VRUyWvglGS8oPWjkglygE4afi6hpD40buWwWHEEcSJDGUASQJAdzuyhyS6w6NurQ7vmAJTXa8bUtVgS5O5aYrMMD/i5WObsQJ2URK2+kod5fvTNiVhMY6lbhM4G0xa/JNA1VY0XQJAJJ8pT9ienNfAxZSgF+4Q8WIq+bnz78L/FKKYRD0BOie23rgGHtBn2XCxPS46Vh3CT9FFKEfXv4r2TiFGF3yqYg==";

        //要加密的数据

        NSString *sourceStr = @"123456";

        //公钥加密

        NSString *encryptStr = [LHRSA encryptString:sourceStr publicKey:publicKey];

        //私钥解密

        NSString *decrypeStr = [LHRSA decryptString:encryptStr privateKey:privateKey];

        NSLog(@"\n加密后的数据:%@ \n 解密后的数据:%@",encryptStr,decrypeStr);

    运行结果 :

    2018-11-27 15:27:13.099152+0800 Encryption[12828:3995427]

    加密后的数据:F+I/egBsrrGlneTT4vr6b6Q9slJ5zPJBhGx85kKEsfkbkvlh1DcVOW29vaCdPQ2klwIyjVOC+FM9PoJRPa6h9RJX5h/ESEz2dD7ZAl2kEkvVr69Eg+1KYzLhAlNagHiT1bMcXRIBfO99oyrJFqLQoWlLG3jURyXwjzQ7Lwc9rmU=

    解密后的数据:123456

    4、AES 对称密钥加密

    加密代码实现:引入 #import

    + (NSData *)AES256EncryptWithKey:(NSString *)key encryptString:(NSString *)str{

        char keyPtr[kCCKeySizeAES256+1]; // room for terminator (unused)

        bzero(keyPtr, sizeof(keyPtr)); // fill with zeroes (for padding)

        // fetch key data

        [key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

        NSUInteger dataLength = [str length];

        size_t bufferSize = dataLength + kCCBlockSizeAES128;

        void *buffer = malloc(bufferSize);

        size_t numBytesEncrypted = 0;

        CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,

                                              keyPtr, kCCKeySizeAES256,

                                              NULL /* initialization vector (optional) */,

                                              [[str dataUsingEncoding:NSUTF8StringEncoding] bytes], dataLength, /* input */

                                              buffer, bufferSize, /* output */

                                              &numBytesEncrypted);

        if (cryptStatus == kCCSuccess) {

            //the returned NSData takes ownership of the buffer and will free it on deallocation

            return [NSData dataWithBytesNoCopy:buffer length:numBytesEncrypted];

        }

        free(buffer); //free the buffer;

        return nil;

    }

    + (NSData *)AES256DecryptWithKey:(NSString *)key DecryptString:(NSData *)str{

        // 'key' should be 32 bytes for AES256, will be null-padded otherwise

        char keyPtr[kCCKeySizeAES256+1]; // room for terminator (unused)

        bzero(keyPtr, sizeof(keyPtr)); // fill with zeroes (for padding)

        // fetch key data

        [key getCString:keyPtr maxLength:sizeof(keyPtr) encoding:NSUTF8StringEncoding];

        NSUInteger dataLength = [str length];

        size_t bufferSize = dataLength + kCCBlockSizeAES128;

        void *buffer = malloc(bufferSize);

        size_t numBytesDecrypted = 0;

        CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt, kCCAlgorithmAES128, kCCOptionPKCS7Padding,

                                              keyPtr, kCCKeySizeAES256,

                                              NULL /* initialization vector (optional) */,

                                              [str bytes], dataLength, /* input */

                                              buffer, bufferSize, /* output */

                                              &numBytesDecrypted);

        if (cryptStatus == kCCSuccess) {

            //the returned NSData takes ownership of the buffer and will free it on deallocation

            return [NSData dataWithBytesNoCopy:buffer length:numBytesDecrypted];

        }

        free(buffer); //free the buffer;

        return nil;

    }

    调用代码

      //用来密钥

        NSString * key = @"123456";

        //用来发送的原始数据

        NSString * secret = @"654321";

        //用密钥加密

        NSData * result = [LHAES AES256EncryptWithKey:key encryptString:secret];

        //输出测试

        NSLog(@"AES加密 :%@",result);

        //解密方法

        NSData * data = [LHAES AES256DecryptWithKey:key DecryptString:result];

        NSLog(@"AES解密 :%@", [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding]);

    运行结果

    2018-11-27 15:27:13.100121+0800 Encryption[12828:3995427] AES加密

    :<93d4cdab 759376b4 51565e57 85f684f6> 2018-11-27 15:27:13.100257+0800

    Encryption[12828:3995427] AES解密 :654321

    5、DES 加密 :先将内容加密一下,然后转十六进制,传过去 ;DES解密 :把收到的数据转二进制,decode一下,然后再解密,得到原本的数据

    代码实现 :引入 #import <CommonCrypto/CommonCryptor.h>

    //加密

    + (NSString *) encryptUseDES2:(NSString *)content key:(NSString *)key{

        NSString *ciphertext = nil;

        const char *textBytes = [content UTF8String];

        size_t dataLength = [content length];

        uint8_t *bufferPtr = NULL;

        size_t bufferPtrSize = 0;

        size_t movedBytes = 0;

        bufferPtrSize = (dataLength + kCCBlockSizeDES) & ~(kCCBlockSizeDES - 1);

        bufferPtr = malloc( bufferPtrSize * sizeof(uint8_t));

        memset((void *)bufferPtr, 0x0, bufferPtrSize);

        CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt, kCCAlgorithm3DES,

                                              kCCOptionPKCS7Padding|kCCOptionECBMode,

                                              [key UTF8String], kCCKeySize3DES,

                                              NULL,

                                              textBytes, dataLength,

                                              (void *)bufferPtr, bufferPtrSize,

                                              &movedBytes);

        if (cryptStatus == kCCSuccess) {

            ciphertext= [self parseByte2HexString:bufferPtr :(int)movedBytes];

        }

        ciphertext=[ciphertext uppercaseString];//字符变大写

        return ciphertext ;

    }

    //加密用到的二进制转化十六进制方法:

    + (NSString *) parseByte2HexString:(Byte *) bytes  :(int)len{

        NSString *hexStr = @"";

        if(bytes)

        {

            for(int i=0;i<len;i++)

            {

                NSString *newHexStr = [NSString stringWithFormat:@"%x",bytes[i]&0xff]; ///16进制数

                if([newHexStr length] == 1)

                    hexStr = [NSString stringWithFormat:@"%@0%@",hexStr,newHexStr];

                else

                {

                    hexStr = [NSString stringWithFormat:@"%@%@",hexStr,newHexStr];

                }

            }

        }

        return hexStr;

    }

    //解密

    + (NSString *)decryptUseDES:(NSString *)content key:(NSString *)key

    {

        NSData* cipherData = [self convertHexStrToData:[content lowercaseString]];

        unsigned char buffer[1024];

        memset(buffer, 0, sizeof(char));

        size_t numBytesDecrypted = 0;

        CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt,

                                              kCCAlgorithm3DES,

                                              kCCOptionPKCS7Padding|kCCOptionECBMode,

                                              [key UTF8String],

                                              kCCKeySize3DES,

                                              NULL,

                                              [cipherData bytes],

                                              [cipherData length],

                                              buffer,

                                              1024,

                                              &numBytesDecrypted);

        NSString* plainText = nil;

        if (cryptStatus == kCCSuccess) {

            NSData* data = [NSData dataWithBytes:buffer length:(NSUInteger)numBytesDecrypted];

            plainText = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];

        }

        return plainText;

    }

    //解密过程用到的十六进制转换二进制:

    + (NSData *)convertHexStrToData:(NSString *)str {

        if (!str || [str length] == 0) {

            return nil;

        }

        NSMutableData *hexData = [[NSMutableData alloc] initWithCapacity:8];

        NSRange range;

        if ([str length] % 2 == 0) {

            range = NSMakeRange(0, 2);

        } else {

            range = NSMakeRange(0, 1);

        }

        for (NSInteger i = range.location; i < [str length]; i += 2) {

            unsigned int anInt;

            NSString *hexCharStr = [str substringWithRange:range];

            NSScanner *scanner = [[NSScanner alloc] initWithString:hexCharStr];

            [scanner scanHexInt:&anInt];

            NSData *entity = [[NSData alloc] initWithBytes:&anInt length:1];

            [hexData appendData:entity];

            range.location += range.length;

            range.length = 2;

        }

        return hexData;

    }

    调用代码

        //用来密钥

        NSString * keyDES = @"123456";

        //用来发送的原始数据

        NSString * secretDES = @"654321";

        NSString * resultDES = [LHDES encryptUseDES2:secretDES key:keyDES];

        NSLog(@"DES加密 :%@",resultDES);

        NSString * decryptResult = [LHDES decryptUseDES:resultDES key:keyDES];

        NSLog(@"DES解密 :%@",decryptResult);

    运行结果

    2018-11-27 15:27:13.100455+0800 Encryption[12828:3995427] DES加密

    :CC1A2A7516D45169 2018-11-27 15:27:13.100643+0800

    Encryption[12828:3995427] DES解密 :654321

    相关文章

      网友评论

          本文标题:常见的几种加密方法

          本文链接:https://www.haomeiwen.com/subject/kdctfctx.html