美文网首页
图的邻接矩阵表示方式及深度、广度优先算法的实现

图的邻接矩阵表示方式及深度、广度优先算法的实现

作者: shawXXQ | 来源:发表于2018-11-30 15:37 被阅读0次

图的存储结构(邻接矩阵方式)

此图为带权无向图

public class MyGraph {
    
    private ArrayList<Object> vertexList;       //存放顶点的数组
    private int[][] edges;              //邻接矩阵,存放边集
    private int numofEdges;         //边数
    private static final int INF = 65535;       //权值为65535时表示不可达
    private boolean[] visited;      //用于深度、广度遍历时顶点是否已被访问的标志
    
    public MyGraph(int n) {
        vertexList = new    ArrayList<>(n); //根据传入的顶点数构造顶点数组
        edges = new int[n][n];                  //构造对应的邻接矩阵
        numofEdges  = 0;
        visited = new boolean[n];
        //初始化邻接矩阵
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < n; j++) {
                if (i == j) {
                    edges[i][j] = 0;
                }else {
                    edges[i][j] = INF;
                }
            }
        }
    }
    
    //获取顶点个数
    public int getNumOfVertex() {
        return vertexList.size();
    }
    
    //获取边数
    public int getNumofEdges() {
        return numofEdges;
    }
    
    //打印邻接矩阵
    public void printEdges() {
        for(int i = 0; i < vertexList.size(); i++) {
            for(int j =0; j < vertexList.size(); j++) {
                if (j == vertexList.size() - 1) {
                    System.out.println(edges[i][j]);
                }else {
                    System.out.print(edges[i][j]+" ");
                }
            }
        }
    }
    
    //获取顶点n的值
    public Object getValueByIndex(int n) {
        return vertexList.get(n);
    }
    
    //获取边n1-n2的权值
    public int getWeight(int n1, int n2) {
        return edges[n1][n2];
    }
    
    //插入结点
    public void insertVertex(Object vertex) {
        vertexList.add(vertexList.size(),vertex);
    }
    
    //插入顶点以及设置权值
    public void insertEdge(int n1, int n2, int weight) {
        edges[n1][n2] = weight;
        //该图为无向图,所以矩阵关于对角线对称
        edges[n2][n1] = weight;
        numofEdges++;
    }
    
    //删除边
    public void deleteEdge(int n1, int n2) {
        edges[n1][n2] = INF;
        //无向图删除边时矩阵依旧对称
        edges[n2][n1] = INF;
        numofEdges--;
    }
}

测试类
测试图如图所示:


图片.png

测试程序如下:

        //顶点数为4
        int n = 4;
        String[] vertex = {"A","B","C","D"};
        MyGraph graph = new MyGraph(n);
        for (String string : vertex) {
            graph.insertVertex(string);
        }
        graph.insertEdge(0, 1, 3);
        graph.insertEdge(0, 2, 8);
        graph.insertEdge(0, 3,10);
        graph.insertEdge(1, 2, 6);
        
        System.out.println("结点数:"+graph.getNumOfVertex());
        System.out.println("边数:"+graph.getNumofEdges());
        System.out.println("删除前的邻接矩阵:");
        graph.printEdges();
        
        graph.deleteEdge(1, 2);
        System.out.println("删除边<B,C>后:");
        System.out.println("结点个数为:"+graph.getNumOfVertex());
        System.out.println("边数为:"+graph.getNumofEdges());
        System.out.println("删除后的邻接矩阵:");
        graph.printEdges();

测试结果:


图片.png

遍历算法

测试图(由于权值不影响遍历结果,所以不标注):


图片.png

深度优先

    //邻接矩阵的深度遍历操作
    public void DFSTraverse(MyGraph graph) {
        for (int i = 0; i < graph.getNumOfVertex(); i++) {
            visited[i] = false;
        }
        for( int i = 0; i < graph.getNumOfVertex(); i++) {
            //对未访问过的结点调用DFS,若是连通图,只会执行一次,非连通图的话有多少个子图则会调用多少次
            if (!visited[i]) {
                DFS(graph, i);
            }
        }
    }
    
    //邻接矩阵的深度优先递归算法
    public void DFS(MyGraph graph, int i) {
        //设置访问标志位为true
        visited[i] = true;
        System.out.print(getValueByIndex(i)+" ");
        for(int j = 0; j < graph.getNumOfVertex(); j++) {
            if (edges[i][j] != 0 && edges[i][j] != INF && !visited[j] ) {
                //对未访问的邻接结点递归调用
                DFS(graph, j);
            }
        }
    }

广度优先

    //邻接矩阵的广度遍历算法
    public void BFSTraverse(MyGraph graph) {
        int i,j;
        //初始化访问标志矩阵
        for(i = 0; i < graph.getNumOfVertex(); i++) {
            visited[i] = false;
        }
        //使用linkedList模拟队列的功能
        LinkedList<Integer> queue  = new LinkedList<>();
        for(i = 0; i < graph.getNumOfVertex(); i++) {
            //该图为非连通图时,第一次广度遍历完后还有结点未被访问时会再次进入这个分支
            //该图为连通图时,该分支只会执行一次,因为执行一次后所有的结点都被访问到了
            if (!visited[i]) {
                visited[i] = true;
                System.out.print(getValueByIndex(i)+" ");
                //将结点添加到队尾
                queue.addLast(i);
                while(!queue.isEmpty()) {
                    //移除队头元素并将其赋值给i
                    i = ((Integer)queue.removeFirst()).intValue();
                    for(j = 0; j < graph.getNumOfVertex(); j++) {
                        if (edges[i][j] != 0 && edges[i][j] != INF && !visited[j] ) {
                            visited[j] = true;
                            System.out.print(getValueByIndex(j)+" ");
                            queue.addLast(j);
                        }
                    }
                }
            }
        }
    }

广度优先各结点在队列中的情况如下

图片.png

测试程序:

public class GraphTest {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        //顶点数为4
        int n = 9;
        String[] vertex = {"A","B","C","D","E","F","G","H","I"};
        MyGraph graph = new MyGraph(n);
        for (String string : vertex) {
            graph.insertVertex(string);
        }
        graph.insertEdge(0, 1, 3);
        graph.insertEdge(0, 2, 8);
        graph.insertEdge(1, 3,10);
        graph.insertEdge(1, 4, 3);
        graph.insertEdge(2, 5, 3);
        graph.insertEdge(2, 6, 3);
        graph.insertEdge(3, 7, 3);
        graph.insertEdge(7, 8, 3);
        
        System.out.println("深度优先遍历结果:");
        graph.DFSTraverse(graph);
        System.out.println("\n广度优先遍历:");
        graph.BFSTraverse(graph);
    }

}

测试结果:


图片.png

相关文章

  • 2019-03-13

    python实现图:邻接表表示: 邻接矩阵表示: 深度优先,广度优先:

  • 图 2019-04-20

    图实现有向图、无向图、有权图、无权图的邻接矩阵和邻接表表示方法实现图的深度优先搜索、广度优先搜索实现 Dijkst...

  • 图基础知识整理和代码实现

    介绍图的基本概念和术语。介绍邻接矩阵和邻接表两种图的表示方法。介绍图的广度和深度优先搜索算法。贡献作者自己实现的图...

  • 图的邻接矩阵表示方式及深度、广度优先算法的实现

    图的存储结构(邻接矩阵方式) 此图为带权无向图 测试类测试图如图所示: 测试程序如下: 测试结果: 遍历算法 测试...

  • 爬虫(3-5)

    深度优先和广度优先1 网站的树结构2 深度优先算法和实现3 广度优先算法和实现 深度优先输出A,B,D,E,I,C...

  • 搜索

    一、深度优先搜索 图深度优先遍历、深度优先搜索算法求有权图两点最短路径 二、广度优先搜索 图广度优先遍历、广度优先...

  • python分布式爬虫搜索引擎实战-2-深度优先和广度优先

    深度优先和广度优先 目录: 网站的树结构 深度优先算法和实现 广度优先算法和实现 网站url树结构:分层设计 子域...

  • 图的遍历

    1.采用深度优先搜索(DFS)遍历图 邻接矩阵: 邻接表: 2.采用广度优先搜索(BFS)遍历图 邻接矩阵: 邻接...

  • 多级树的深度优先遍历与广度优先遍历(Java实现)

    多级树的深度优先遍历与广度优先遍历(Java实现) 深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看...

  • 1、邻接矩阵 2、邻接表 3、广度优先遍历 4、深度优先遍历①递归 ②非递归 Dijkstra算法 Floyd-W...

网友评论

      本文标题:图的邻接矩阵表示方式及深度、广度优先算法的实现

      本文链接:https://www.haomeiwen.com/subject/kdsccqtx.html