美文网首页
Elasticsearch如何做到亿级数据查询毫秒级返回?

Elasticsearch如何做到亿级数据查询毫秒级返回?

作者: ApesKingMan | 来源:发表于2020-04-23 09:24 被阅读0次

    面试的时候碰到这样一个面试题:ES 在数据量很大的情况下(数十亿级别)如何提高查询效率?

        问题就是看你有没有实际用过 ES,因为啥?其实 ES 性能并没有你想象中那么好的。

    性能优化的杀手锏:Filesystem Cache

         ES 里写的数据,实际上都写到磁盘文件里去了,查询的时候,操作系统会将磁盘文件里的数据自动缓存到 Filesystem Cache 里面去。

    ES 的搜索引擎严重依赖于底层的 Filesystem Cache,你如果给 Filesystem Cache 更多的内存,尽量让内存可以容纳所有的 IDX Segment File 索引数据文件,那么你搜索的时候就基本都是走内存的,性能会非常高。

    性能差距究竟可以有多大?我们之前很多的测试和压测,如果走磁盘一般肯定上秒,搜索性能绝对是秒级别的,1 秒、5 秒、10 秒。

    如果是走 Filesystem Cache,是走纯内存的,那么一般来说性能比走磁盘要高一个数量级,基本上就是毫秒级的,从几毫秒到几百毫秒不等。

    归根结底,你要让 ES 性能好,最佳的情况下,就是你的机器的内存,至少可以容纳你的总数据量的一半。

    一般是建议用 ES + HBase 这么一个架构

            HBase 的特点是适用于海量数据的在线存储,就是对 HBase 可以写入海量数据,但是不要做复杂的搜索,做很简单的一些根据 id 或者范围进行查询的这么一个操作就可以了。

    数据预热

            对于那些你觉得比较热的、经常会有人访问的数据,最好做一个专门的缓存预热子系统。就是对热数据每隔一段时间,就提前访问一下,让数据进入 Filesystem Cache 里面去。这样下次别人访问的时候,性能一定会好很多。

    冷热分离

            ES 可以做类似于 MySQL 的水平拆分,就是说将大量的访问很少、频率很低的数据,单独写一个索引,然后将访问很频繁的热数据单独写一个索引,最好是将冷数据写入一个索引中,然后热数据写入另外一个索引中,这样可以确保热数据在被预热之后,尽量都让他们留在 Filesystem OS Cache 里,别让冷数据给冲刷掉。

    Document模型设计

            Document 模型设计是非常重要的,很多操作,不要在搜索的时候才想去执行各种复杂的乱七八糟的操作。另外对于一些太复杂的操作,比如 join/nested/parent-child 搜索都要尽量避免,性能都很差的。

    分页性能优化

        可以用 Scroll API,关于如何使用,自行上网搜索。

    Scroll 会一次性给你生成所有数据的一个快照,然后每次滑动向后翻页就是通过游标 scroll_id 移动,获取下一页、下一页这样子,性能会比上面说的那种分页性能要高很多很多,基本上都是毫秒级的。

    所以现在很多产品,都是不允许你随意翻页的,App,也有一些网站,做的就是你只能往下拉,一页一页的翻。初始化时必须指定 Scroll 参数,告诉 ES 要保存此次搜索的上下文多长时间。你需要确保用户不会持续不断翻页翻几个小时,否则可能因为超时而失败。

    除了用 Scroll API,你也可以用 search_after 来做。search_after 的思想是使用前一页的结果来帮助检索下一页的数据。显然,这种方式也不允许你随意翻页,你只能一页页往后翻。初始化时,需要使用一个唯一值的字段作为 Sort 字段。

    参考:https://mp.weixin.qq.com/s/JXpKf7bjiPkIU11EqcJEMw

    相关文章

      网友评论

          本文标题:Elasticsearch如何做到亿级数据查询毫秒级返回?

          本文链接:https://www.haomeiwen.com/subject/kehhvhtx.html