美文网首页
MapReduce 基础 (九)自定义OutputFormat

MapReduce 基础 (九)自定义OutputFormat

作者: 做个合格的大厂程序员 | 来源:发表于2020-06-17 11:12 被阅读0次

有时候我们需要将输出的文件分别对应的输出到不同的文件夹中,通常TextOutputFormat类不能给我们实现这个功能,所以我们需要用自定义的OutputFormat来解决这个问题。

首先我们需要自定义一个MyOutputFormat

package cn.itcast.demo2.myoutputformat;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class MyOutputFormat extends FileOutputFormat<Text,NullWritable> {
    @Override
    public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
        //1:获取目标文件的输出流(两个)
        FileSystem fileSystem = FileSystem.get(taskAttemptContext.getConfiguration());
        FSDataOutputStream goodCommentsOutputStream = fileSystem.create(new Path("file:///D:\\out\\good_comments\\good_comments.txt"));
        FSDataOutputStream badCommentsOutputStream = fileSystem.create(new Path("file:///D:\\out\\bad_comments\\bad_comments.txt"));

        //2:将输出流传给MyRecordWriter
        MyRecordWriter myRecordWriter = new MyRecordWriter(goodCommentsOutputStream,badCommentsOutputStream);

        return myRecordWriter;
    }
}   

然后重写一个MyRecordWriter类

package cn.itcast.demo2.myoutputformat;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;

import java.io.IOException;

public class MyRecordWriter extends RecordWriter<Text,NullWritable> {
    private FSDataOutputStream goodCommentsOutputStream;
    private FSDataOutputStream badCommentsOutputStream;

    public MyRecordWriter() {
    }

    public MyRecordWriter(FSDataOutputStream goodCommentsOutputStream, FSDataOutputStream badCommentsOutputStream) {
        this.goodCommentsOutputStream = goodCommentsOutputStream;
        this.badCommentsOutputStream = badCommentsOutputStream;
    }

    /**
     *
     * @param text  行文本内容
     * @param nullWritable
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    public void write(Text text, NullWritable nullWritable) throws IOException, InterruptedException {
        //1:从行文本数据中获取第9个字段
        String[] split = text.toString().split("\t");
        String numStr = split[9];

        //2:根据字段的值,判断评论的类型,然后将对应的数据写入不同的文件夹文件中
        if(Integer.parseInt(numStr) <= 1){
            //好评或者中评
            goodCommentsOutputStream.write(text.toString().getBytes());
            goodCommentsOutputStream.write("\r\n".getBytes());
        }else{
            //差评
            badCommentsOutputStream.write(text.toString().getBytes());
            badCommentsOutputStream.write("\r\n".getBytes());
        }

    }

    @Override
    public void close(TaskAttemptContext taskAttemptContext) throws IOException, InterruptedException {
        IOUtils.closeStream(goodCommentsOutputStream);
        IOUtils.closeStream(badCommentsOutputStream);
    }
}

Mapper(我们可以什么都不用定义)

package cn.itcast.demo2.myoutputformat;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class MyOutputFormatMapper extends Mapper<LongWritable,Text,Text,NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        context.write(value, NullWritable.get());
    }
}

自定义主类

package cn.itcast.demo2.myoutputformat;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class JobMain extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {
        //1:获取job对象
        Job job = Job.getInstance(super.getConf(), "myoutputformat_job");

        //2:设置job任务
            //第一步:设置输入类和输入的路径
            job.setInputFormatClass(TextInputFormat.class);
            TextInputFormat.addInputPath(job, new Path("file:///D:\\input\\myoutputformat_input"));

            //第二步:设置Mapper类和数据类型
            job.setMapperClass(MyOutputFormatMapper.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(NullWritable.class);

            //第八步:设置输出类和输出的路径
            job.setOutputFormatClass(MyOutputFormat.class);
            MyOutputFormat.setOutputPath(job, new Path("file:///D:\\out\\myoutputformat_out"));


        //3:等待任务结束
        boolean bl = job.waitForCompletion(true);
        return bl ? 0 : 1;
    }

    public static void main(String[] args) throws Exception {
        Configuration configuration = new Configuration();
        int run = ToolRunner.run(configuration, new JobMain(), args);
        System.exit(run);
    }
}

相关文章

网友评论

      本文标题:MapReduce 基础 (九)自定义OutputFormat

      本文链接:https://www.haomeiwen.com/subject/kewjxktx.html