1.流程:
1. 数据获取
2. 非结构化数据转化成结构化数据
3. 构建知识图谱、构建搜索及推荐引擎
2.如何建立全息档案?
建立全息档案的技术框架包括 Web 索引层、知识图谱层和应用层三部分。
Web 索引层是我们逐步做出的一个「搜索引擎」,每天不断爬取互联网中的网页,留下可能与我们感兴趣的机构——我们称为种子机构——相关的部分,经过爬取、解析、清洗、建立索引等步骤入库,向上方的知识图谱层提供接口。
知识图谱层首先会进行命名实体提取与关系分类。命名实体提取需要从索引中获取与种子机构相关的每一个网页。「种子机构」列表相当于一张在爬取过程中不断变长的名单。从最大型的央企、上市公司以及各领域中的知名公司、各大知名院校开始,在和它们相关的每一个网页中,知识图谱层都会提取出新的命名实体,包括机构、人物,也包括时间、地点。其中尚未出现在「种子机构」名单中的机构,会以迭代循环的方式加入到名单中。而在一个预定长度的窗口内同时出现的任意两个命名实体,则会对其关系进行分类。
3.举例说明实体提取的输入输出分别是什么?
例如,在上文的新闻网页文本内容中,包含了「链家集团」、「融创中国」、「新希望」等机构,以及「左晖」、「孙宏斌」、「张明贵」等人物。我们希望得到的序列标注输出是,所有非机构和人物的词,比如「公开」、「资料」等,对应的标签都是 UNK,而所有机构和人物中的词,比如「融创」、「中国」等,对应的标签都是机构和人物的相应类型。
4.举例说明选用的实体提取与关系分类的技术解决方案?
实体提取/关系分类的解决方案有两种。一种是经典的管道式(pipeline),首先用序列标注的思路来解决命名实体提取问题,再用分类的思路来解决实体关系提取问题。另一种是将实体提取和关系提取统一表述为序列标注问题,用序列标注的解决思路(LSTM+CNN)来统一处理两个问题。
为了确保知识图谱的高质量和可产品化,我们使用了优化后的管道式的处理逻辑:即,在实体提取之后,利用基于第三方数据源训练的分类器剔除错误的实体,以保证在进入到关系提取之前,实体准确率在 95% 以上。
5.举例说明应用场景?
销售场景。
该公司正在面向企业客户推广一种新零售解决方案,因此它的销售团队希望告诉销售员,应该去当前区域内的哪家公司进行推广、和哪位负责人联系进行推广。
针对第一个问题,我们从公司的全息档案中利用所在地理位置、规模、员工平均年龄、收入水平、学历水平和企业风险等信息,查找切分出「公司规模相对较大、福利较好,愿意接受新零售方案,同时员工平均年龄较低、平均收入较高,是特定产品的消费者」这样的一部分。
针对第二个问题,我们从公开信息中找到公司的行政方面的负责人是谁,告诉销售,这位是你需要联系的负责购买决策的关键人士,并提供触达该关键人物的关系路径。
除此之外,准备打磨一个面向销售的线上产品。这个产品能够在短时间内综合各种公开互联网信息,绘制公司组织架构图,定位关键负责人。同时,找到能够连接特定销售与特定的负责人之间的中间人。
网友评论