之前面试有问到死锁,在这里总结一下。
一. 关于死锁 (deallocks)
定义
死锁是指多个进程循环等待它方占有的资源而无限期地僵持下去的局面。
具体是两个或两个以上的进程(线程)在执行过程中,因争夺资源
而造成的一种互相等待的现象;若无外力作用,它们都将无法推进下去。
危害
此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(线程)称为死锁进程(线程)。 由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程(线程)在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。由于线程被无限期地阻塞,因此程序不可能正常终止。
条件
Java 死锁产生的四个必要条件:
- 互
斥
使用,即当资源被一个线程使用(占有)时,别的线程不能使用 - 不可
抢
占,资源请求者不能强制从资源占有者手中夺取资源,资源只能由资源占有者主动释放。 - 请求和
保
持,即当资源请求者在请求其他的资源的同时保持对原有资源的占有。 -
循
环等待,即存在一个等待队列:P1占有P2的资源,P2占有P3的资源,P3占有P1的资源。这样就形成了一个等待环路。
当上述四个条件都成立的时候,便形成死锁。当然,死锁的情况下如果打破上述任何一个条件,便可让死锁消失。
二. 死锁例子
import java.util.Date;
public class LockTest {
public static String obj1 = "obj1";
public static String obj2 = "obj2";
public static void main(String[] args) {
LockA la = new LockA();
new Thread(la).start();
LockB lb = new LockB();
new Thread(lb).start();
}
}
class LockA implements Runnable {
public void run() {
try {
System.out.println(new Date().toString() + " LockA 开始执行");
while (true) {
synchronized (LockTest.obj1) {
System.out.println(new Date().toString() + " LockA 锁住 obj1");
Thread.sleep(3000); // 此处等待是给B能锁住机会
synchronized (LockTest.obj2) {
System.out.println(new Date().toString() + " LockA 锁住 obj2");
Thread.sleep(60 * 1000); // 为测试,占用了就不放
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
class LockB implements Runnable {
public void run() {
try {
System.out.println(new Date().toString() + " LockB 开始执行");
while (true) {
synchronized (LockTest.obj2) {
System.out.println(new Date().toString() + " LockB 锁住 obj2");
Thread.sleep(3000); // 此处等待是给A能锁住机会
synchronized (LockTest.obj1) {
System.out.println(new Date().toString() + " LockB 锁住 obj1");
Thread.sleep(60 * 1000); // 为测试,占用了就不放
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
![](https://img.haomeiwen.com/i11861611/2050d48965b6a01b.jpg)
三. 死锁解决方案
理论上
死锁是由四个必要条件导致的,所以一般来说,只要破坏这四个必要条件中的一个条件,死锁情况就应该不会发生。
- 打破互
斥
条件
我们需要允许进程同时访问某些资源,这种方法受制于实际场景,不太容易实现条件 - 打破不可
抢
占条件
这样需要允许进程强行从占有者那里夺取某些资源,或者简单一点理解,占有资源的进程不能再申请占有其他资源,必须释放手上的资源之后才能发起申请,这个其实也很难找到适用场景 - 打破请求和
保
持
进程在运行前申请得到所有的资源,否则该进程不能进入准备执行状态。这个方法看似有点用处,但是它的缺点是可能导致资源利用率和进程并发性降低 - 打破
循
环等待
避免出现资源申请环路,即对资源事先分类编号,按号分配。这种方式可以有效提高资源的利用率和系统吞吐量,但是增加了系统开销,增大了进程对资源的占用时间。
如果我们在死锁检查时发现了死锁情况,那么就要努力消除死锁,使系统从死锁状态中恢复过来。
实际消除死锁的几种方式
1. 以确定的顺序获得锁(打破循环等待)
所有的锁都按照特定的顺序获取,可以防止死锁的发生
2. 超时放弃(打破请求和保持)
当使用synchronized关键词提供的内置锁时,只要线程没有获得锁,那么就会永远等待下去,然而Lock接口提供了boolean tryLock(long time, TimeUnit unit) throws InterruptedException
方法,该方法可以按照固定时长等待锁,因此线程可以在获取锁超时以后,主动释放之前已经获得的所有的锁。通过这种方式,也可以很有效地避免死锁。
3. 撤消进程,剥夺资源(打破循环等待)
终止参与死锁的进程,收回它们占有的资源,从而解除死锁。
这时又分两种情况:一次性撤消参与死锁的全部进程,剥夺全部资源;或者逐步撤消参与死锁的进程,逐步收回死锁进程占有的资源。
一般来说,选择逐步撤消的进程时要按照一定的原则进行,目的是撤消那些代价最小的进程,比如按进程的优先级确定进程的代价;考虑进程运行时的代价和与此进程相关的外部作业的代价等因素;
4. 重新启动(打破循环等待)
最简单、最常用的方法就是进行系统的重新启动,不过这种方法代价很大,它意味着在这之前所有的进程已经完成的计算工作都将付之东流,包括参与死锁的那些进程,以及未参与死锁的进程
5. 进程回退策略(打破循环等待)
即让参与死锁的进程回退到没有发生死锁前某一点处,并由此点处继续执行,以求再次执行时不再发生死锁。虽然这是个较理想的办法,但是操作起来系统开销极大,要有堆栈这样的机构记录进程的每一步变化,以便今后的回退,有时这是无法做到的。
网友评论