title: Roman to Integer
tags:
- roman-to-integer
- No.13
- simple
- finite-automata
- amortized-analysis
- naive
- integer
Problem
Roman numerals are represented by seven different symbols: I
, V
, X
, L
, C
, D
and M
.
Symbol Value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000
For example, two is written as II
in Roman numeral, just two one's added together. Twelve is written as, XII
, which is simply X
+ II
. The number twenty seven is written as XXVII
, which is XX
+ V
+ II
.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII
. Instead, the number four is written as IV
. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX
. There are six instances where subtraction is used:
-
I
can be placed beforeV
(5) andX
(10) to make 4 and 9. -
X
can be placed beforeL
(50) andC
(100) to make 40 and 90. -
C
can be placed beforeD
(500) andM
(1000) to make 400 and 900.
Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 to 3999.
Example 1:
Input: "III"
Output: 3
Example 2:
Input: "IV"
Output: 4
Example 3:
Input: "IX"
Output: 9
Example 4:
Input: "LVIII"
Output: 58
Explanation: C = 100, L = 50, XXX = 30 and III = 3.
Example 5:
Input: "MCMXCIV"
Output: 1994
Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
Solution
Naive
For value v_{i} and v_{i+1}, if v_{i} is mis-added, then just minus 2 * v_{i} to correct it. Running time is O(log(x)).
import java.util.*;
class Solution {
public int romanToInt(String s) {
Map<String, Integer> f = new HashMap<String, Integer>();
f.put("I", 1);
f.put("V", 5);
f.put("X", 10);
f.put("L", 50);
f.put("C", 100);
f.put("D", 500);
f.put("M", 1000);
String[] x = s.split("");
int i = 0;
int y = f.get(x[i]);
for ( ; i<s.length()-1; i++) {
if (f.get(x[i]) >= f.get(x[i+1])) {y = y + f.get(x[i+1]);}
else {y = y + f.get(x[i+1]) - 2 * f.get(x[i]);}
}
return y;
}
}
Finite Automata
Many character string problems can be solved by finite automata. For any state, we define its state transition function f(s_i, x_j) = s_k and amortized value v(s_i, x_j):
State Transition Table
I | V | X | L | C | D | M | |
---|---|---|---|---|---|---|---|
0 | 1 | 0 | 2 | 0 | 3 | 0 | 0 |
1 | 0 | 0 | 0 | 4 | 4 | 4 | 4 |
2 | 1 | 0 | 0 | 0 | 0 | 4 | 4 |
4 | 1 | 0 | 2 | 0 | 3 | 0 | 0 |
Here [4] is the error state which is not processed in the algorithm.
Amortized Value Transition Table
I | V | X | L | C | D | M | |
---|---|---|---|---|---|---|---|
0 | 1 | 5 | 10 | 50 | 100 | 500 | 1000 |
1 | 1 | 3 | 8 | 0 | 0 | 0 | 0 |
2 | 1 | 5 | 10 | 30 | 80 | 0 | 0 |
4 | 1 | 5 | 10 | 50 | 100 | 300 | 800 |
Running time is O(x) with space complexity O(56).
import java.util.*;
class Solution {
public int romanToInt(String s) {
// state transition table
int[][] f = new int[][] {
{1,0,2,0,3,0,0},
{0,0,0,4,4,4,4},
{1,0,0,0,0,4,4},
{1,0,2,0,3,0,0}
};
// amortized value transition table
int[][] v = new int[][] {
{ 1, 5, 10, 50,100,500,1000},
{ 1, 3, 8, 0, 0, 0, 0 },
{ 1, 5, 10, 30, 80, 0, 0 },
{ 1, 5, 10, 50,100,300,800 }
};
// map from roman char to index
Map<String, Integer> indexMap = new HashMap<String, Integer>();
indexMap.put("I", 0);
indexMap.put("V", 1);
indexMap.put("X", 2);
indexMap.put("L", 3);
indexMap.put("C", 4);
indexMap.put("D", 5);
indexMap.put("M", 6);
int s = 0;
int y = 0;
int k = 0;
String[] x = s.split("");
for (int i=0; i<s.length(); i++) {
k = indexMap.get(x[i]);
// update
y = y + v[s][k];
s = f[s][k];
}
return y;
}
}
网友评论