import os
import numpy as np
from tqdm import tqdm #进度条
from glob import glob
from scipy import ndimage
from keras.preprocessing.image import ImageDataGeneratior
import keras
img_size = 255 # 自行更改
train_path = r'D:\CVML\Project\Heartchallenge_sound\Peter_HeartSound\Train_Valid_Test\train'
num_train = len( glob (train_path + r'**.jpg') ) #图片数量
x_train = np.zeros( (num_train, img_size, img_size, 3), dtype=np.uint8) #训练集
y_train = np.zeros( (num_train,), dtype=np.uint8) #训练集label
i=0
for img_path in tqdm( glob(train_path + r'**.jpg) ):
img = ndimage.imread(img_path)
x_train[i, :, :, :] = img #赋值
if img_path.split('//')[-2] == 'normal':
y_train[i] = 0 #赋值label
else:
y_train[i] = 1
i += 1
datagen = ImageDataGenerator(rescale = 1.0/255.0, featurewise_center = True, featurewise_std_normalization= True)
datagen.fit(x_train) #图片预处理
待解决问题: 如何输入??
网友评论