美文网首页arXiv daily
机器学习每日论文速递[07.31]

机器学习每日论文速递[07.31]

作者: arXiv每日论文速递 | 来源:发表于2019-07-31 10:39 被阅读3次

    同步wx号(arXiv每日论文速递),支持后台回复'search 关键词'查询相关的最新论文。有些许帮助的话,麻烦关注一下哦(* ̄rǒ ̄)

    cs.LG 方向,今日共计63篇

    【1】 An Experiment on Measurement of Pavement Roughness via Android-Based Smartphones
    标题:基于Android智能手机的路面平整度测量实验
    作者: Piyasak Thiandee, Ponlathep Lertworawanich
    链接:https://arxiv.org/abs/1907.13120

    【2】 A Federated Learning Approach for Mobile Packet Classification
    标题:一种用于移动分组分类的联合学习方法
    作者: Evita Bakopoulou, Athina Markopoulou
    链接:https://arxiv.org/abs/1907.13113

    【3】 Predicting assisted ventilation in Amyotrophic Lateral Sclerosis using a mixture of experts and conformal predictors
    标题:用专家和适形预测因子的混合预测肌萎缩侧索硬化症的辅助通气
    作者: Telma Pereira, Sara C.Madeira
    链接:https://arxiv.org/abs/1907.13070

    【4】 GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations
    标题:创世:以对象为中心的潜在表征的生成性场景推理和采样
    作者: Martin Engelcke, Ingmar Posner
    备注:Submitted to the 3rd Conference on Robot Learning (CoRL 2019)
    链接:https://arxiv.org/abs/1907.13052

    【5】 Approximation Capabilities of Neural Ordinary Differential Equations
    标题:神经常微分方程的逼近能力
    作者: Han Zhang, Tom Arodz
    链接:https://arxiv.org/abs/1907.12998

    【6】 Kernels on fuzzy sets: an overview
    标题:模糊集上的核:综述
    作者: Jorge Guevara, Stéphane Canu
    备注:Learning on Distributions, Functions, Graphs and Groups @ NIPS-2017, 8th Dec
    链接:https://arxiv.org/abs/1907.12991

    【7】 Transferability of Spectral Graph Convolutional Neural Networks
    标题:谱图卷积神经网络的可移植性
    作者: Ron Levie, Gitta Kutyniok
    链接:https://arxiv.org/abs/1907.12972

    【8】 A real-time iterative machine learning approach for temperature profile prediction in additive manufacturing processes
    标题:添加剂制造过程温度分布预测的实时迭代机器学习方法
    作者: Arindam Paul, Ankit Agrawal
    链接:https://arxiv.org/abs/1907.12953

    【9】 Prudence When Assuming Normality: an advice for machine learning practitioners
    标题:假设正常时的谨慎:给机器学习从业者的建议
    作者: Waleed A. Yousef
    链接:https://arxiv.org/abs/1907.12852

    【10】 Multi-Kernel Capsule Network for Schizophrenia Identification
    标题:多核胶囊网络在精神分裂症鉴别中的应用
    作者: Tian Wang, Junhua Li
    链接:https://arxiv.org/abs/1907.12827

    【11】 An alarm prediction framework for financial IT system using hybrid machine learning methods
    标题:一种基于混合机器学习方法的金融IT系统告警预测框架
    作者: Jingwen Wang, You Song
    链接:https://arxiv.org/abs/1907.12778

    【12】 Not All Adversarial Examples Require a Complex Defense: Identifying Over-optimized Adversarial Examples with IQR-based Logit Thresholding
    标题:并不是所有的对抗实例都需要复杂的防御:使用基于IQR的logit阈值识别过度优化的对抗实例
    作者: Utku Ozbulak, Wesley De Neve
    备注:Accepted for the 2019 International Joint Conference on Neural Networks (IJCNN-19)
    链接:https://arxiv.org/abs/1907.12744

    【13】 Confounder-Aware Visualization of ConvNets
    标题:ConvNets的混杂感知可视化
    作者: Qingyu Zhao, Kilian M. Pohl
    链接:https://arxiv.org/abs/1907.12727

    【14】 Model-Free Unsupervised Learning for Optimization Problems with Constraints
    标题:约束优化问题的无模型无监督学习
    作者: Chengjian Sun, Chenyang Yang
    链接:https://arxiv.org/abs/1907.12706

    【15】 Control of nonlinear, complex and black-boxed greenhouse system with reinforcement learning
    标题:具有强化学习的非线性、复杂和黑箱温室系统的控制
    作者: Byunghyun Ban, Soobin Kim
    备注:4 pages, 2 figures, 1 table. 2 pages of supplementary information. Published on ICTC 2017
    链接:https://arxiv.org/abs/1907.12690

    【16】 The Challenge of Imputation in Explainable Artificial Intelligence Models
    标题:可解释人工智能模型中的归因挑战
    作者: Muhammad Aurangzeb Ahmad, Ankur Teredesai
    备注:The IJCAI-19 Workshop on Artificial Intelligence Safety
    链接:https://arxiv.org/abs/1907.12669

    【17】 Airbnb Price Prediction Using Machine Learning and Sentiment Analysis
    标题:基于机器学习和情绪分析的Airbnb价格预测
    作者: Pouya Rezazadeh Kalehbasti, Hoormazd Rezaei
    链接:https://arxiv.org/abs/1907.12665

    【18】 Task Classification Model for Visual Fixation, Exploration, and Search
    标题:用于视觉固定、探索和搜索的任务分类模型
    作者: Ayush Kumar, Klaus Mueller
    链接:https://arxiv.org/abs/1907.12635

    【19】 Deep Gradient Boosting
    标题:深梯度升压
    作者: Erhan Bilal
    链接:https://arxiv.org/abs/1907.12608

    【20】 A Factored Generalized Additive Model for Clinical Decision Support in the Operating Room
    标题:手术室临床决策支持的因式广义可加模型
    作者: Zhicheng Cui, Yixin Chen
    备注:Accepted for publication in AMIA 2019 Annual Symposium
    链接:https://arxiv.org/abs/1907.12596

    【21】 Making Sense of Vision and Touch: Learning Multimodal Representations for Contact-Rich Tasks
    标题:理解视觉和触觉:学习接触丰富的任务的多模态表示
    作者: Michelle A. Lee, Jeannette Bohg
    备注:arXiv admin note: substantial text overlap with arXiv:1810.10191
    链接:https://arxiv.org/abs/1907.13098

    【22】 Climate-driven statistical models as effective predictors of local dengue incidence in Costa Rica: A Generalized Additive Model and Random Forest approach
    标题:气候驱动的统计模型作为哥斯达黎加当地登革热发病率的有效预测因子:广义加性模型和随机森林方法
    作者: Paola Vásquez, Luis A. Barboza
    链接:https://arxiv.org/abs/1907.13095

    【23】 Pay attention to the activations: a modular attention mechanism for fine-grained image recognition
    标题:注意激活:细粒度图像识别的模块化注意机制
    作者: Pau Rodríguez López, Jordi Gonzàlez Sabaté
    链接:https://arxiv.org/abs/1907.13075

    【24】 Screening Mammogram Classification with Prior Exams
    标题:用前期检查筛选乳房X线片分类
    作者: Jungkyu Park, Krzysztof J. Geras
    备注:MIDL 2019 [arXiv:1907.08612]
    链接:https://arxiv.org/abs/1907.13057

    【25】 Grid Saliency for Context Explanations of Semantic Segmentation
    标题:语义切分上下文解释的网格显著性
    作者: Lukas Hoyer, Volker Fischer
    链接:https://arxiv.org/abs/1907.13054

    【26】 SkeleMotion: A New Representation of Skeleton Joint Sequences Based on Motion Information for 3D Action Recognition
    标题:SkeleMotion:一种新的基于运动信息的骨骼关节序列表示方法
    作者: Carlos Caetano, William Robson Schwartz
    备注:16-th IEEE International Conference on Advanced Video and Signal-based Surveillance (AVSS2019)
    链接:https://arxiv.org/abs/1907.13025

    【27】 Predicting credit default probabilities using machine learning techniques in the face of unequal class distributions
    标题:在不平等的类别分布面前使用机器学习技术预测信用违约概率
    作者: Anna Stelzer
    链接:https://arxiv.org/abs/1907.12996

    【28】 FingerNet: Pushing The Limits of Fingerprint Recognition Using Convolutional Neural Network
    标题:FingerNet:利用卷积神经网络突破指纹识别的极限
    作者: Shervin Minaee, Amirali Abdolrashidi
    备注:arXiv admin note: substantial text overlap with arXiv:1907.09380
    链接:https://arxiv.org/abs/1907.12956

    【29】 Pyramid: Machine Learning Framework to Estimate the Optimal Timing and Resource Usage of a High-Level Synthesis Design
    标题:金字塔:用于估计高级综合设计的最佳时机和资源使用的机器学习框架
    作者: Hosein Mohammadi Makrani, Setareh Rafatirad
    备注:This paper has been accepted in The International Conference on Field-Programmable Logic and Applications 2019 (FPL'19)
    链接:https://arxiv.org/abs/1907.12952

    【30】 RNN-based Online Handwritten Character Recognition Using Accelerometer and Gyroscope Data
    标题:使用加速度计和陀螺仪数据的基于RNN的在线手写字符识别
    作者: Davit Soselia, Levan Shugliashvili
    链接:https://arxiv.org/abs/1907.12935

    【31】 Weakly Supervised Object Localization using Min-Max Entropy: an Interpretable Framework
    标题:基于最小-最大熵的弱监督对象定位:一种可解释的框架
    作者: Soufiane Belharbi, Eric Granger
    链接:https://arxiv.org/abs/1907.12934

    【32】 Incremental Bounded Model Checking of Artificial Neural Networks in CUDA
    标题:CUDA中人工神经网络的增量式有界模型检测
    作者: Luiz H. Sena, Edjard Mota
    链接:https://arxiv.org/abs/1907.12933

    【33】 Object as Distribution
    标题:对象作为分布
    作者: Li Ding, Lex Fridman
    备注:NeurIPS 2019
    链接:https://arxiv.org/abs/1907.12929

    【34】 Distill-to-Label: Weakly Supervised Instance Labeling Using Knowledge Distillation
    标题:提取到标签:使用知识蒸馏的弱监督实例标签
    作者: Jayaraman J. Thiagarajan, Alexandros Karagyris
    链接:https://arxiv.org/abs/1907.12926

    【35】 Deep Neural Network Approach to Forward-Inverse Problems
    标题:正反问题的深层神经网络方法
    作者: Hyeontae Jo, Eunheui Kim
    链接:https://arxiv.org/abs/1907.12925

    【36】 Tracking Holistic Object Representations
    标题:跟踪整体对象表示
    作者: Axel Sauer, Sami Haddadin
    备注:Accepted for oral presentation at BMVC 2019
    链接:https://arxiv.org/abs/1907.12920

    【37】 Attention Filtering for Multi-person Spatiotemporal Action Detection on Deep Two-Stream CNN Architectures
    标题:深层双流CNN体系结构中多人时空行为检测的注意过滤
    作者: João Antunes, Daniel Siewiorek
    链接:https://arxiv.org/abs/1907.12919

    【38】 Covering up bias in CelebA-like datasets with Markov blankets: A post-hoc cure for attribute prior avoidance
    标题:用马尔可夫毯子掩盖类CelebA数据集中的偏差:属性先验避免的一种后特效疗法
    作者: Vinay Uday Prabhu, John Whaley
    备注:Accepted for presentation at the first workshop on Invertible Neural Networks and Normalizing Flows (ICML 2019), Long Beach, CA, USA
    链接:https://arxiv.org/abs/1907.12917

    【39】 DeepPlace: Learning to Place Applications in Multi-Tenant Clusters
    标题:DeepPlace:学习将应用程序放置在多租户群集中
    作者: Subrata Mitra, Ramanuja Simha
    备注:APSys 2019
    链接:https://arxiv.org/abs/1907.12916

    【40】 ISEA: Image Steganalysis using Evolutionary Algorithms
    标题:ISEA:使用进化算法的图像隐写分析
    作者: Farid Ghareh Mohammadi, Hamid R. Arabnia
    链接:https://arxiv.org/abs/1907.12914

    【41】 Unsupervised Separation of Dynamics from Pixels
    标题:动态与像素的无监督分离
    作者: Silvia Chiappa, Ulrich Paquet
    链接:https://arxiv.org/abs/1907.12906

    【42】 Data augmentation with Symbolic-to-Real Image Translation GANs for Traffic Sign Recognition
    标题:用于交通标志识别的符号-真实图像转换GANS数据增强
    作者: Nour Soufi, Matias Valdenegro-Toro
    链接:https://arxiv.org/abs/1907.12902

    【43】 Slot Based Image Augmentation System for Object Detection
    标题:用于目标检测的基于槽的图像增强系统
    作者: Yingwei Zhou
    链接:https://arxiv.org/abs/1907.12900

    【44】 A Multi-Scale Mapping Approach Based on a Deep Learning CNN Model for Reconstructing High-Resolution Urban DEMs
    标题:基于深度学习CNN模型的高分辨率城市DEM重建的多比例尺映射方法
    作者: Ling Jiang, Andrea Soltoggio
    链接:https://arxiv.org/abs/1907.12898

    【45】 Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation
    标题:摘要中高效强化学习的奖励学习
    作者: Yang Gao, Iryna Gurevych
    备注:Accepted to IJCAI 2019
    链接:https://arxiv.org/abs/1907.12894

    【46】 Increasing Shape Bias in ImageNet-Trained Networks Using Transfer Learning and Domain-Adversarial Methods
    标题:使用转移学习和领域对抗性方法在ImageNet训练的网络中增加形状偏差
    作者: Francis Brochu
    链接:https://arxiv.org/abs/1907.12892

    【47】 CoachAI: A Project for Microscopic Badminton Match Data Collection and Tactical Analysis
    标题:CoachAI:微观羽毛球比赛数据采集与战术分析项目
    作者: Tzu-Han Hsu, Yu-Tai Ching
    链接:https://arxiv.org/abs/1907.12888

    【48】 End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction with Relational Reasoning
    标题:基于关系推理的端到端循环多目标跟踪与轨迹预测
    作者: Fabian B. Fuchs, Ingmar Posner
    链接:https://arxiv.org/abs/1907.12887

    【49】 AUC: Nonparametric Estimators and Their Smoothness
    标题:AUC:非参数估计及其光滑性
    作者: Waleed A. Yousef
    链接:https://arxiv.org/abs/1907.12851

    【50】 Pain Detection with fNIRS-Measured Brain Signals: A Personalized Machine Learning Approach Using the Wavelet Transform and Bayesian Hierarchical Modeling with Dirichlet Process Priors
    标题:用fNIRS测量的脑信号进行疼痛检测:一种使用小波变换和带有Dirichlet过程先验的贝叶斯分层建模的个性化机器学习方法
    作者: Daniel Lopez-Martinez, Rosalind Picard
    链接:https://arxiv.org/abs/1907.12830

    【51】 Machine learning in APOGEE: Identification of stellar populations through chemical abundances
    标题:远地点的机器学习:通过化学丰度识别恒星种群
    作者: Rafael Garcia-Dias, Pedro Alonso Palicio
    链接:https://arxiv.org/abs/1907.12796

    【52】 PointHop: An Explainable Machine Learning Method for Point Cloud Classification
    标题:PointHop:一种可解释的点云分类机器学习方法
    作者: Min Zhang, C.-C. Jay Kuo
    链接:https://arxiv.org/abs/1907.12766

    【53】 Temporal Attentive Alignment for Large-Scale Video Domain Adaptation
    标题:大规模视频域自适应的时间注意对齐
    作者: Min-Hung Chen, Jian Zheng
    备注:International Conference on Computer Vision (ICCV) 2019. Code and data: this http URL
    链接:https://arxiv.org/abs/1907.12743

    【54】 Deep Learning in Video Multi-Object Tracking: A Survey
    标题:视频多目标跟踪中的深度学习:综述
    作者: Gioele Ciaparrone, Francisco Herrera
    链接:https://arxiv.org/abs/1907.12740

    【55】 Propose-and-Attend Single Shot Detector
    标题:提议并参加单发探测器
    作者: Ho-Deok Jang, In So Kweon
    链接:https://arxiv.org/abs/1907.12736

    【56】 Classical and Quantum Algorithms for Tensor Principal Component Analysis
    标题:张量主成分分析的经典和量子算法
    作者: M. B. Hastings
    链接:https://arxiv.org/abs/1907.12724

    【57】 Exploring large scale public medical image datasets
    标题:探索大规模公共医学图像数据集
    作者: Luke Oakden-Rayner
    链接:https://arxiv.org/abs/1907.12720

    【58】 Dual-FOFE-net Neural Models for Entity Linking with PageRank
    标题:PageRank实体链接的双FFE-Net神经模型
    作者: Feng Wei, Hui Jiang
    备注:ICANN 2019
    链接:https://arxiv.org/abs/1907.12697

    【59】 Particle Swarm Optimisation for Evolving Deep Neural Networks for Image Classification by Evolving and Stacking Transferable Blocks
    标题:进化深层神经网络的粒子群优化算法及其在图像分类中的应用
    作者: Bin Wang, Mengjie Zhang
    备注:Under review of Australasian Joint Conference on Artificial Intelligence 2019
    链接:https://arxiv.org/abs/1907.12659

    【60】 How model accuracy and explanation fidelity influence user trust
    标题:模型准确性和解释保真度如何影响用户信任
    作者: Andrea Papenmeier, Christin Seifert
    备注:AI IJCAI Workshop on Explainable Artificial Intelligence (X-AI) 2019
    链接:https://arxiv.org/abs/1907.12652

    【61】 Mapping road safety features from streetview imagery: A deep learning approach
    标题:从街景图像绘制道路安全特征:一种深度学习方法
    作者: Arpan Sainju, Zhe Jiang
    链接:https://arxiv.org/abs/1907.12647

    【62】 MoBiNet: A Mobile Binary Network for Image Classification
    标题:MoBiNet:一种用于图像分类的移动二值网络
    作者: Hai Phan, Zhiqiang Shen
    链接:https://arxiv.org/abs/1907.12629

    【63】 Cooperative Beamforming with Predictive Relay Selection for Urban mmWave Communications
    标题:城市毫米波通信中具有预测中继选择的协作波束形成
    作者: Anastasios Dimas, Athina P. Petropulu
    链接:https://arxiv.org/abs/1907.12616

    翻译:腾讯翻译君

    相关文章

      网友评论

        本文标题:机器学习每日论文速递[07.31]

        本文链接:https://www.haomeiwen.com/subject/kmhzrctx.html