题目
给出集合 [1,2,3,…,n],其所有元素共有 n! 种排列。
按大小顺序列出所有排列情况,并一一标记,当 n = 3 时, 所有排列如下:
1."123"
2."132"
3."213"
4."231"
5."312"
6."321"
给定 n 和 k,返回第 k 个排列。
说明:
给定 n 的范围是 [1, 9]。
给定 k 的范围是[1, n!]。
示例 1:
输入: n = 3, k = 3
输出: "213"
示例 2:
输入: n = 4, k = 9
输出: "2314"
思路
先通过举例来获得更好的理解。以n = 4,k = 9为例:
1234
1243
1324
1342
1423
1432
2134
2143
2314 <= k = 9
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321
最高位可以取{1, 2, 3, 4},而每个数重复3! = 6次。所以第k=9个permutation的s[0]为{1, 2, 3, 4}中的第9/6+1 = 2个数字s[0] = 2。
而对于以2开头的6个数字而言,k = 9是其中的第k' = 9%(3!) = 3个。而剩下的数字{1, 3, 4}的重复周期为2! = 2次。所以s[1]为{1, 3, 4}中的第k'/(2!)+1 = 2个,即s[1] = 3。
对于以23开头的2个数字而言,k = 9是其中的第k'' = k'%(2!) = 1个。剩下的数字{1, 4}的重复周期为1! = 1次。所以s[2] = 1.
对于以231开头的一个数字而言,k = 9是其中的第k''' = k''/(1!)+1 = 1个。s[3] = 4
#include <vector>
using namespace std;
class Solution {
public:
string getPermutation(int n, int k) {
string result;
string mun = "123456789";
vector<int> factor(n, 1);
for (int i = 1; i < n; i++) factor[i] = factor[i - 1] * i;
k--;
for (int i = n; i >= 1; i--)
{
int j = k / factor[i - 1];
k %= factor[i - 1];
result.push_back(mun[j]);
mun.erase(mun.begin() + j);
}
return result;
}
};
网友评论